Walter Boscheri
ultima modifica
27/04/2021 18:23
Membro del CMCS
Università: Università degli Studi di Ferrara
Carica: professore
E-mail: walter.boscheri@unife.it
Tematiche di ricerca: Meccanica computazionale dei fluidi e dei solidi - Metodi numerici ad alto ordine: Volumi finiti e DG - Griglie non strutturate - Schemi Lagrangiani - Asymptotic and structure preserving methods.
Alcune pubblicazioni:
- W. Boscheri, L. Pareschi. High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers. Journal of Computational Physics, vol. 434, art. 110206, 2020;
- W. Boscheri, G. Dimarco. High order central WENO-Implicit-Explicit Runge Kutta schemes for the BGK model on general polygonal meshes. Journal of Computational Physics, vol. 422, art. 109766, 2020;
- W. Boscheri. A space-time semi-Lagrangian advection scheme on staggered Voronoi meshes applied to free surface flows. Computers & Fluids, vol. 202, art. 104503, 2020;
- W. Boscheri. An efficient high order direct ALE ADER finite volume scheme with a posteriori limiting for hydrodynamics and magnetohydrodynamics. International Journal for Numerical Methods in Fluids, vol. 84, pp. 76-106, 2017;
- W. Boscheri, R. Loubère. High Order Accurate Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD Finite Volume Schemes for Non-Conservative Hyperbolic Systems with Stiff Source Terms. Communications in Computational Physics, vol. 21, pp. 271–312, 2017;
- W. Boscheri. High Order Direct Arbitrary-Lagrangian–Eulerian (ALE) Finite Volume Schemes for Hyperbolic Systems on Unstructured Meshes. Archives of Computational Methods in Engineering, vol. 24, pp. 751-801, 2017;
- W. Boscheri, M. Dumbser. High order accurate direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes on moving curvilinear unstructured meshes. Computers & Fluids, vol. 136, pp. 48–66, 2016.
- W. Boscheri, D. S. Balsara, M. Dumbser. Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers. Journal of Computational Physics, vol. 267, pp. 112–138, 2014.