

University of Ferrara

Stefano Bonnini

ClusterAnalysis

Summary

- Introduction to Cluster Analysis (CA)
- Distances and Similarity Indices
- CA hierarchical methods
- CA non hierarchical methods

- Available information: data about k variables observed on n statistical units
- Table of data: $n \times k$ matrix $X = [x_{ij}]$
 - x_{ij} = value of X_i observed on unit *i*
 - *i=*1,...,*n*
 - *j*=1,...,*k*
- Goal of the analysis: classification of the *n* units into homogeneous groups, according to predefined criteria of diversity or similarity, with the intent of getting a small number of categories or classes

Example: A marketing survey on the demand of the wine «Passito» has been performed.

A sample of n=386 people has been interviewed. The questionnaire includes several questions about their preferences and behaviors related to drinking wine

- Age: Sex:	е: Sex: мо ғ			- Province of Residence:							
- Do you like drinking wine?	not at all	1	2	3	4 0	5 0	6 0	7	very much		
- How often do you drink wine			I	rarely	SO	sometimes		n 1	regularly		
at home with meals?				o o		0		•			
in bars or pubs?		0		0		•)	0		
at restaurants with meals?) _	0	0			0)	0		
	not at all	1	2	3	4	5	6	7			
 Do you know the wine Passito? 		0	Ō	0	0	0	Ō	Ò			

The variables:

Label	Description	Coding
ID	Personal ID of the interviewed	Increasing integer number
AgeClass	Age of the person	Age (years)
AGE_CLASS	Age class of the person	1-6
SEX	Sex of the person	M or F
PROV	Province where the interviewed lives	Province code
LIKE_WINE	How much do you like drinking wine?	Integrer number from 1 to 7
FREQ_HOME	How often do you drink wine <u>at home</u> with meals?	Integrer number from 1 to 5
FREQ_BAR	How often do you drink wine in bars/pubs?	Integrer number from 1 to 5
FREQ_REST	How often do you drink wine at restaurants with meals?	Integrer number from 1 to 5
KNOW_PAS	Do you know the wine Passito?	Integrer number from 1 to 7
FREQ_PAS	How often do you drink Passito?	Integrer number from 1 to 5
FREQ_P_HOL	How often do you drink Passito on holidays and celebrations?	Integrer number from 1 to 5
FREQ_P_ALO	How often do you drink Passito when you are alone?	Integrer number from 1 to 5
FREQ_P_MEA	How often do you drink Passito at the end of meals?	Integrer number from 1 to 5
FREQ_P_OFF	How often do you drink Passito offered by someone?	Integrer number from 1 to 5
HOW_MUCH	How much wine do you drink in one year?	Integrer number from 1 to 4
LIKE_PAS	How much do you like drinking Passito?	Integrer number from 1 to 7
LIKE_AROMA	How much do you like aroma and smell of Passito?	Integrer number from 1 to 7
LIKE_SWEET	How much do you like the sweetness of Passito?	Integrer number from 1 to 7
LIKE_ALCOHOL	How much do you like the alcohol content of Passito?	Integrer number from 1 to 7
LIKE_TASTE	How much do you like the intensity of taste of Passito?	Integrer number from 1 to 7
PRICE	How much could you pay for one bottle of Passito? (0.5 litre)	Integrer number from 1 to 5

The dataset:

ID A	GE A	GE_CLAS	SEX F	ROV LI	KE_WINE	FREQ_HOME	FREQ_BAR	FREQ_REST	KNOW_PAS	
1	26	1	Μ	PD	6	2	4	4	4	
2	43	3	Μ	PD	7	3	1	4	6	
3	32	2	Μ	VR	6	4	3	3	6	
4	53	4	F	PD	6	4	2	5	5	
5	30	2	Μ	PD	4	2	3	4	2	
6	23	1	F	VR	5	3	2	4	5	
7	46	3	Μ	VE	5	2	3	6		
8	26	1	Μ	PD	6	3	2	5	5	
9	25	1	Μ	BL	6	3	4	4	7	
10	22	1	Μ	VE	5	3	4	4	5	
11	24	1	Μ	VE	4	1	3	3	3	
12	22	1	Μ	VE	7	5	4	5	7	
13	23	1	Μ	VI	7	3	5	5	7	
14	23	1	М	VE	7	4	4	4	4	
					•					

- The Group Analysis or Cluster Analysis is a typical explorative method for the identification of clusters of similar units according to the *n k*-dimensional observations. Before the analysis there is no certainty that such groups exist
- Example: segmentation of the market of wine drinkers by the identification of homogeneous groups of customers
- Final result: reduction of the dimension of the table of data from the point of view of the statistical units (number of rows) → from *n* observed statistical units to *g* homogeneous groups (*g*<<*n*)

Choices in CA:

- Which informative variables must be considered?
- Which distance or index of similarity must be used?
- Which method for the definition of the groups must be applied?
 - General criterium: internal cohesion and external separation
 - Methods:
 - Hierarchical method: progressive aggregation of units
 - Non hierarchical method: unique partition given the number *g* of groups
- How to evaluate the final partitions and to choose the optimal one?

Summary

- Introduction to Cluster Analysis (CA)
- Distances and Similarity Indices
- CA hierarchical methods
- CA non hierarchical methods

• Let's denote with $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{ik})$ ' and $\mathbf{x}_u = (x_{u1}, x_{u2}, \dots, x_{uk})$ ' the *k*-dimensional vectors of two statistical units (*i*-th and *u*-th row of the dataset)

• *Proximity:* resemblance, non diversity, ... between two statistical units measured through the index $PI_{iu}=f(\mathbf{x}_i, \mathbf{x}_u)$

- Proximity Indices:
 - For numeric variables
 - ✓ Distances
 - ✓ Distance indices
 - ✓ Dissimilarity indices
 - $\,\circ\,$ For categorical variables
 - ✓ Similarity indices

• Distance (metrics) between units *i* and u is a function $d_{iu}=d(\mathbf{x}_i,\mathbf{x}_u)$ such that:

1. $d(\mathbf{x}_i, \mathbf{x}_u) \ge 0$ (non negativity)

2. $d(\mathbf{x}_i, \mathbf{x}_u) = 0 \iff \mathbf{x}_i = \mathbf{x}_u$ (identity)

3. $d(\mathbf{x}_i, \mathbf{x}_u) = d(\mathbf{x}_u, \mathbf{x}_i)$ (symmetry)

4. $d(\mathbf{x}_i, \mathbf{x}_u) \le d(\mathbf{x}_i, \mathbf{x}_s) + d(\mathbf{x}_s, \mathbf{x}_u) \quad \forall \mathbf{x}_i, \mathbf{x}_s, \mathbf{x}_u \in \mathcal{R}^k$ (triangular inequality)

- Euclidean distance: $_{2}d_{iu} = \|x_i x_u\| = \left[\sum_{j=1}^{k} (x_{ij} x_{uj})^2\right]^{1/2}$
- Manhattan distance: $_{1}d_{iu} = \sum_{j=1}^{k} |x_{ij} x_{uj}|$
- Minkowski distance: ${}_{m}d_{iu} = \left[\sum_{j=1}^{k} |x_{ij} x_{uj}|^{m}\right]^{1/m}$
- Chebichev distance: ${}_{\infty}d_{iu} = \lim_{m \to \infty} {}_{m}d_{iu} = \max_{j=1,\dots,k} |x_{ij} x_{uj}|$ (Lagrange distance)

- Properties:
 - P1: euclidean distance 2diu is affected more strongly than Manhattan distance by great differences between pairs of values
 - *P2:* Minkowski distance ${}_{m}d_{iu}$ is non increasing function of parameter *m*: ${}_{1}d_{iu} \ge {}_{2} d_{iu} \ge {}_{\infty} \ge {}_{\infty} d_{iu}$

• Properties:

- **P3**: Minkowski distance ${}_{m}d_{iu}$ is invariant respect to variable translation ${}_{m}d(x_{i} + c, x_{u} + c) =_{m}d(x_{i}, x_{u})$, with $c = (c_{1}, \dots, c_{k})' \in \Re^{k}$ but not respect to linear transformations of one or more variables such as $a_{j}x_{ij} + c_{j}$, $i = 1, \dots, n, j = 1, \dots, k$. Hence a change of the scale or the measurement unit determines a change of the distance
- *P4:* euclidean distance ${}_{2}d_{iu}$ is invariant respect to ortogonal transformations (rotations), that is ${}_{2}d(Tx_{i},Tx_{u}) = {}_{2}d(x_{i},x_{u})$ with $T \ k \times k$ matrix such that T'T = I

Starting point of hierarchical methods: *n×n* matrix of distances

$$\mathbf{D} = \begin{bmatrix} d_{ij} \end{bmatrix} = \begin{bmatrix} 0 & d_{12} & d_{13} & \dots & d_{1n} \\ & 0 & d_{23} & \dots & d_{2n} \\ & & 0 & \dots & d_{3n} \\ & & & \dots & \dots \\ & & & & 0 \end{bmatrix}$$

- **Distance index** between units *i* and u is a function $DI_{iu}=DI(\mathbf{x}_i, \mathbf{x}_u)$ such that:
 - 1. $DI(\mathbf{x}_i, \mathbf{x}_u) \ge 0$ (non negativity)
 - 2. $DI(\mathbf{x}_i, \mathbf{x}_u) = 0 \Leftrightarrow \mathbf{x}_i = \mathbf{x}_u$ (identity)
 - 3. $d(\mathbf{x}_i, \mathbf{x}_u) = d(\mathbf{x}_u, \mathbf{x}_i)$ (symmetry)

Example: ${}_{2}d_{iu}^{2} = ||x_{i} - x_{u}||^{2}$ statisfies the additivity property, that is:

$${}_{2}d_{iu}^{2} = \sum_{j=1}^{k_{1}} (x_{ij} - x_{uj})^{2} + \sum_{j=k_{1}+1}^{k} (x_{ij} - x_{uj})^{2}$$

• Dissimilarity index (or diversity index according to Leti) between units *i* and u is a function $DS_{iu}=DS(\mathbf{x}_i, \mathbf{x}_u)$ such that:

1.
$$DS(\mathbf{x}_i, \mathbf{x}_u) \ge 0$$
 (non negativity)

2.
$$DS(\mathbf{x}_i, \mathbf{x}_u) = 0 \leftarrow \mathbf{x}_i = \mathbf{x}_u$$

3. $DS(\mathbf{x}_i, \mathbf{x}_u) = DS(\mathbf{x}_u, \mathbf{x}_i)$ (symmetry)

• Similarity index (with categorical variables) between units *i* and u is a function $S_{iu}=S(\mathbf{x}_i,\mathbf{x}_u)$ such that:

Case of k dichotomous variables:

- Each variable takes two possible levels
 - 1=presence of a given characteristic
 - 0= absence of the characteristic
- For each couple of units (*i*, *u*) we compute:
 - f_{11} = frequency of characteristics jointly present in *i* and $u \rightarrow \sum_{j=1}^{k} x_{ij} x_{uj}$
 - f_{10} = frequency of of characteristics present in *i* but not in $u \to \sum_{j=1}^{k} x_{ij} (1 - x_{uj})$
 - f_{01} = frequency of of characteristics present in ubut not in $i \rightarrow \sum_{j=1}^{k} (1 - x_{ij}) x_{uj}$
 - f_{00} = frequency of characteristics jointly absent in *i* and in $u \to \sum_{j=1}^{k} (1 - x_{ij})(1 - x_{uj})$

Indices based on co-presences:

- Index of Russel and Rao: ${}_{1}S_{iu} = \frac{f_{11}}{k}$
- Index of Jaccart: ${}_2S_{iu} = \frac{f_{11}}{f_{11}+f_{10}+f_{01}}$

Indices based on co-presences and co-absences:

• Index of Sokal and Michener: ${}_{3}S_{iu} = \frac{f_{11}+f_{00}}{k}$ (index of simple correspondence)

We have:
$$_1S_{iu} \leq _2 S_{iu} \leq _3 S_{iu} =$$

Case of k categorical (not all dichotomous) variables:

- Some of the k variables can take more than two levels (categories)
- Variable X_j can take r_j categories and $\sum_{j=1}^k r_j = R$
- Each variable can be represented by r_j dichotomous variables (j=1,...,k)
- An index based on co-presences applied to the *R* dichotomous variables can be considered

Summary

- Introduction to Cluster Analysis (CA)
- Distances and Similarity Indices
- CA hierarchical methods
- CA non hierarchical methods

 Hierarchical methods provide a family of partitions of the statistical units with a number g of groups which varies from n to 1

- \circ Trivial starting partition: g=n groups of 1 unit
- \circ Intermediate partitions: 1 < g < n

• Final partition: g=1 group of *n* units

Example: wine survey on Passito

oTrivial starting partition: each customer is one group Intermediate partitions: number of groups varies from 385 to 2 • Final partition: all 386 customers represent one group

Methods which use the $n \times n$ matrix of distances (or of proximities) D:

- 1. The two nearest units (with minimum distance or maximum proximity) are grouped
- 2. A new $(n-1)\times(n-1)$ D matrix is computed, which represents the distances (or proximities) between the *n*-1 clusters obtained in the previous step (*n*-2 clusters with 1 unit and 1 cluster with 2 units)
- 3. In the new D matrix the minimum distance (or maximum proximity) is detected and the two corresponding clusters are grouped
- 4. Previous steps are repeated, according to an iterated procedure, where at step *t* we have g=n-t+1 groups and a $(n-t+1)\times(n-t+1)$ *D* matrix, and the two nearest clusters are grouped, with t=1,...,n
- 5. At the end of the procedure (*t*=*n*) we have 1 group with all the *n* units

Criteria for computing the distance between two clusters (groups):

Let C_1 and C_2 be two clusters with n_1 and n_2 units respectively

- Single linkage or nearest neighbour method: $d(C_1, C_2) = min(d_{iu}) i \in C_1, u \in C_2$
- Complete linkage or farthest neighbour method: $d(C_1, C_2) = max(d_{iu}) i \in C_1, u \in C_2$
- Average linkage between groups method or UPGMA (Unweighted Pair-Group Method Using arithmetic Averages): $d(C_1, C_2) = \sum_{i,u} d_{iu} / (n_1 n_2), i \in C_1, u \in C_2$
- Average linkage within groups method (arithmetic average of the distances between all the m=n₁+n₂ units of the two clusters joined together):

$$d(C_1, C_2) = \sum_{i,u} d_{iu} / (n_1 n_2), i \in C_1, u \in C_2$$

Remarks:

- With the nearest neighbour method we can have the «chain effect»: two far units can be joined into the same cluster in the presence of a sequence of intermediate points
- With the farthest neighbour method we can have compact groups but with an approximately hyperspherical shape
- Average linkage method can be a good compromise to have internal cohesion and external separation between the groups

Hierarchical methods which also use the original matrix of observed data:

• Centroid method:

$$d(C_{1,},C_2)=d(\overline{x}_{1,},\overline{x}_2)$$

the distance between two clusters is equal to the distance between the two *k*-dimensional vectors of means computed on the n_1 units of C_1 and the n_2 units of C_2

Hierarchical methods which also use the original matrix of observed data:

• Ward method or least deviance method.

Uses the breakdown of the total deviance:

$$TD = \sum_{j=1}^{k} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2$$

$$WD = \sum_{l=1}^{g} \left[\sum_{j=1}^{k} \sum_{i=1}^{n} (x_{ij} - \bar{x}_{j,l})^2 \right] = \sum_{l=1}^{g} DW_l$$

$$BD = \sum_{j=1}^{k} \sum_{l=1}^{g} n_l (\bar{x}_{j,l} - \bar{x}_j)^2$$

$$TD = WD + BD$$

 \bar{x}_j : sample mean of *j*-th variable $\bar{x}_{j,l}$: sample mean of *j*-th variable in cluster *l*

At each step of the procedure, the aggregation which causes the least increasing of DW is chosen

Criteria for evaluating the partitioning:

• Given a partition of the units in *g* groups, the proportion of global variability explained by this partition is:

 $R^2 = 1 - WD / TD = BD / TD$

This index takes values between 0 and 1 and the smaller the number *g* of groups the smaller the index value

Dendogram

Summary

- Introduction to Cluster Analysis (CA)
- Distances and Similarity Indices
- CA hierarchical methods
- CA non hierarchical methods

With the non <u>hierarchical methods</u> we get just one partition of the n units into g clusters, for a pre-determined number g of clusters

- The rule for the allocation of the units into the clusters considers \bullet an objective function, usually based on the breakdown of the total deviance TD
- Example. Wine survey on Passito: ullet
 - Starting partition: the customers are classified into g groups
 - Intermediate partitions: the customers are reallocated in the groups and, for each reallocation, the corresponding value of the objective function is computed
 - o Each customer is assigned to a new group when this assignement provides the greatest improvement of internal cohesion
 - The reallocations are repeated until a given stopping rule is satisfied
- Weaknesses of the procedure: (1) The choice of the number g of ٠ groups is arbitrary; (2) the starting partition affects the final result $_{35}$

K-means method

- 1. Chose g starting seeds or poles as centroids of the starting partition and assign each unit to the cluster with the nearest centroid
- 2. Compute the centroids of the *g* new clusters created at step (1)
- 3. Assign each unit to the new cluster with the nearest centroid
- 4. Repeat step (2) and step (3) until one of the following convergence rules is satisfied:
 - *I.* R^2 variation is less than a given treshold
 - II. The changes of the centroid positions are less than a given treshold
 - III. The number of iterations reaches a certain predetermined value

IV. ...

Remark: with euclidean distance we always have convergence of the algorithm

R exercises

Problem 1 - Passito

- Perform a hierarchical CA on the 17 response variables of the questionnaire which represent habits, behaviors and preferences of wine drinkers (from variable LIKE_WINE to variable PRICE) to detect homogeneous market segments of wine drinkers
- Perform a k-means CA on the 17 response variables of the questionnaire to detect 4 homogeneous market segments of wine drinkers

R exercises

Problem 2 - Students

- Perform a FA on the 5 observed response variables to detect new q<5 variables which «explain» data
- Perform a PCA on the 5 response variables with the same goal

R exercises

Problem 3 – Eating Habits

- Perform a FA on the 12 observed response variables (from *Alcoholic.Beverages* to *Milk*) to detect new *q<12* variables which «explain» data
- Perform a PCA on the 12 response variables with the same goal