

University of Ferrara



# Stefano Bonnini Factor Analysis And

# Principal Component Analysis

## Summary

- Introduction to Factor Analysis (FA)
- Factor Model
- Parameter estimation and factor rotation in FA
- How to proceed with FA...
- Principal Component Analysis (PCA)

• FA is a multivariate technique for the analysis of data structure

• Goal: reduce the number of informative variables through the definition of new variables called factors

 Method: transformation of the structure of observed data into a new structure such that the data variability is explained by the factors

Example: A marketing survey on the demand of the wine «Passito» has been performed.

A sample of n=386 people has been interviewed. The questionnaire includes several questions about their preferences and behaviors related to drinking wine

| - Age:                          | \ge: Sex: мо ғ |   |                 | - Province of Residence: |         |         |        |           |           |  |  |
|---------------------------------|----------------|---|-----------------|--------------------------|---------|---------|--------|-----------|-----------|--|--|
| - Do you like drinking<br>wine? | not at all     | 1 | 2               | 3                        | 4       | 5<br>0  | 6<br>0 | 7<br>0    | very much |  |  |
| - How often do you drink wine   |                |   | rarely sometime |                          | netimes | often - |        | regularly |           |  |  |
| at home with meals?             |                |   |                 | <b>்</b>                 |         | 0       |        | C         | •         |  |  |
| in bars or pubs?                |                | 0 |                 | •                        |         | •       |        | C         | 0         |  |  |
| at restaurants with m           | eals?          | 0 |                 | 0                        |         | 0       | ς      | C         | 0         |  |  |
|                                 |                | - |                 |                          |         | _       |        |           |           |  |  |
| - Do vou know the wine          | not at all     | 1 | 2               | 3                        | 4       | 5       | 6      | 7         | very well |  |  |
| Passito?                        | -              | 0 | 0               | 0                        | O       | 0       | 0      | 0         |           |  |  |

#### The variables:

| Label        | Description                                                   | Coding                      |
|--------------|---------------------------------------------------------------|-----------------------------|
| ID           | Personal ID of the interviewed                                | Increasing integer number   |
| AgeClass     | Age of the person                                             | Age (years)                 |
| AGE_CLASS    | Age class of the person                                       | 1-6                         |
| SEX          | Sex of the person                                             | M or F                      |
| PROV         | Province where the interviewed lives                          | Province code               |
| LIKE_WINE    | How much do you like drinking wine?                           | Integrer number from 1 to 7 |
| FREQ_HOME    | How often do you drink wine <u>at home</u> with meals?        | Integrer number from 1 to 5 |
| FREQ_BAR     | How often do you drink wine <u>in bars/pubs</u> ?             | Integrer number from 1 to 5 |
| FREQ_REST    | How often do you drink wine at restaurants with meals?        | Integrer number from 1 to 5 |
| KNOW_PAS     | Do you know the wine Passito?                                 | Integrer number from 1 to 7 |
| FREQ_PAS     | How often do you drink Passito?                               | Integrer number from 1 to 5 |
| FREQ_P_HOL   | How often do you drink Passito on holidays and celebrations?  | Integrer number from 1 to 5 |
| FREQ_P_ALO   | How often do you drink Passito when you are alone?            | Integrer number from 1 to 5 |
| FREQ_P_MEA   | How often do you drink Passito at the end of meals?           | Integrer number from 1 to 5 |
| FREQ_P_OFF   | How often do you drink Passito offered by someone?            | Integrer number from 1 to 5 |
| HOW_MUCH     | How much wine do you drink in one year?                       | Integrer number from 1 to 4 |
| LIKE_PAS     | How much do you like drinking Passito?                        | Integrer number from 1 to 7 |
| LIKE_AROMA   | How much do you like aroma and smell of Passito?              | Integrer number from 1 to 7 |
| LIKE_SWEET   | How much do you like the sweetness of Passito?                | Integrer number from 1 to 7 |
| LIKE_ALCOHOL | How much do you like the alcohol content of Passito?          | Integrer number from 1 to 7 |
| LIKE_TASTE   | How much do you like the intensity of taste of Passito?       | Integrer number from 1 to 7 |
| PRICE        | How much could you pay for one bottle of Passito? (0.5 litre) | Integrer number from 1 to 5 |

#### The dataset:

| ID A | GE AG | GE_CLAS | SEX F | PROV LI | KE_WINE | FREQ_HOME | FREQ_BAR | FREQ_REST | KNOW_PAS |  |
|------|-------|---------|-------|---------|---------|-----------|----------|-----------|----------|--|
| 1    | 26    | 1       | Μ     | PD      | 6       | 2         | 4        | 4         | 4        |  |
| 2    | 43    | 3       | Μ     | PD      | 7       | 3         | 1        | 4         | 6        |  |
| 3    | 32    | 2       | Μ     | VR      | 6       | 4         | 3        | 3         | 6        |  |
| 4    | 53    | 4       | F     | PD      | 6       | 4         | 2        | 5         | 5        |  |
| 5    | 30    | 2       | Μ     | PD      | 4       | 2         | 3        | 4         | 2        |  |
| 6    | 23    | 1       | F     | VR      | 5       | 3         | 2        | 4         | 5        |  |
| 7    | 46    | 3       | Μ     | VE      | 5       | 2         | 3        | 6         |          |  |
| 8    | 26    | 1       | Μ     | PD      | 6       | 3         | 2        | 5         | 5        |  |
| 9    | 25    | 1       | Μ     | BL      | 6       | 3         | 4        | 4         | 7        |  |
| 10   | 22    | 1       | Μ     | VE      | 5       | 3         | 4        | 4         | 5        |  |
| 11   | 24    | 1       | Μ     | VE      | 4       | 1         | 3        | 3         | 3        |  |
| 12   | 22    | 1       | Μ     | VE      | 7       | 5         | 4        | 5         | 7        |  |
| 13   | 23    | 1       | Μ     | VI      | 7       | 3         | 5        | 5         | 7        |  |
| 14   | 23    | 1       | Μ     | VE      | 7       | 4         | 4        | 4         | 4        |  |
|      |       |         |       |         |         |           |          |           |          |  |

Factor properties:

• Uncorrelated with each other

- Unobserved latent variables (unknown a priori) which reproduce the existing correlations between original variables
- Original variables are linear combinations of factors

Assumptions:

• FA can be applied to a set of numeric standardizable variables

• Number of statistical units should be at least 5 times the number of original variables

# Summary

- Introduction to Factor Analysis (FA)
- Factor Model
- Parameter estimation and factor rotation in FA
- How to proceed with FA...
- Principal Component Analysis (PCA)

•  $X_1, \ldots, X_k$  response variables such that

- 
$$E(X_j) = \mu_j$$
,  $Var(X_j) = \sigma_{jj} = \sigma_j^2$ ,  $Cov(X_jX_r) = \sigma_{jr}$ ;  
 $j,r = 1,...,k$ 

• 
$$X_j = \lambda_{j1} F_1 + \lambda_{j2} F_2 + \dots + \lambda_{js} F_s + \dots + \lambda_{jq} F_q + U_j + \mu_j$$
,  
 $= \sum_s \lambda_{js} F_s + U_j + \mu_j$ ,  $j=1,\dots,k$   
 $-\lambda_{j1}, \lambda_{j2}, \dots, \lambda_{jq}$  ( $j=1,\dots,k$ ): parameters (constants)  
called factor loadings

- *F*<sub>1</sub>, *F*<sub>2</sub>,..., *F*<sub>q</sub> common factors (random variables)
- $U_j$ , unique or specific factor (j=1,...,k)

#### Model assumptions:

✓  $E(F_s)=0$ , ✓  $Var(F_s)=1$ , ✓  $Cov(F_s, F_t)=0$ ,

s=1,...,q s=1,...,q s,t=1,...,q; s ≠ t

✓  $E(U_j)=0,$ ✓  $Var(U_j)=_u\sigma_{jj}=_u\sigma_j^2$ ✓  $Cov(U_j, U_r)=0$ 

 $\checkmark$  Cov(Fs, Uj)=0

#### Matrix representation:

- $\boldsymbol{X} = [X_1, \ldots, X_k]'$
- $\boldsymbol{F} = [F_1, \ldots, F_q]'$
- $\boldsymbol{U} = [U_1, \ldots, U_k]'$
- $\Lambda = [\lambda_{is}]$
- $\mu = [\mu_1, ..., \mu_k]'$

random vector of response variables random vector of unique factors random vector of unique factors *k*× *q* matrix of constants (parameters) vector of means

- $X = \Lambda F + U + \mu$ 
  - $E(X) = \mu$ ,  $Var(X) = \Sigma = [\sigma_{jr}]$ - E(F) = 0, Var(F) = I = diag(1, 1, ..., 1)- E(U) = 0,  $Var(U) = diag(_u \sigma_{11}, ..., _u \sigma_{kk}) = _u \Sigma$ - Cov(F,U) = 0

Variance decompocition (VD):



 $\lambda_{js} = E(X_j, F_s) = Cov(X_j, F_s) \rightarrow \text{measure of the linear}$ dependence between  $X_j$  and  $F_s$ 

With matrix notation:  $\Sigma = AA' + {}_{u}\Sigma$ 

- FA can be applied to <u>standardizable</u> numeric variables
- The number of units should be at least 5 times the number of original response variables:  $n \ge 5 \times k$
- The common factors should explain at least 70% of the global variability of the original response variables
- The problem of detecting F and  $\Lambda$  has no unique solution

# Summary

- Introduction to Factor Analysis (FA)
- Factor Model
- Parameter estimation and factor rotation in FA
- How to proceed with FA...
- Principal Component Analysis (PCA)

If factor model assumptions are true for F, then a rotation of F provides new factors  $F^*$  for which the assumptions are still true and which correspond to different factor loadings  $\Lambda^*$ .

Formally:

given the orthogonal  $q \times q$  matrix **G** (such that **GG**' = **I**)

$$X = \Lambda F + U + \mu =$$
  
=  $\Lambda GG'F + U + \mu =$   
=  $(\Lambda G)(G'F) + U + \mu =$   
=  $\Lambda^* F^* + U + \mu$ 

To overcome the indeterminacy of factor loadings we can impose the constrain  $A^{*\prime}{}_{u}\Sigma^{-1}A^{*}$  = diagonal

Parameter estimates:

$$\widehat{\boldsymbol{\mu}} = \text{sample mean of } \boldsymbol{X}, \text{ i.e. } \widehat{\mu}_j = \overline{x}_j = \sum_{i=1}^n x_{ij}/n$$

$$\widehat{\lambda}_{js} = l_{js}$$

$$\circ l_{js} \text{ can be computed through the application of }$$

$$\bullet \text{ Principal Factor Analysis (based on correlations)}$$

$$\bullet \text{ Maximum likelihood Factor Analysis }$$

$$\widehat{\sigma}_{jj} = s_{jj} = \sum_{i=1}^n (x_{ij} - \overline{x}_j)^2 / (n - 1)$$

$$u \widehat{\sigma}_{jj} = s_{jj} - \sum_{s=1}^q l_{js}^2$$

- The previous constrain on factor loadings, simplifies the computation of the estimates, thus it is mathematically convenient, but it can create some problems of interpretation in some cases
- Appropriate constrained transformation could be the one that allows to get ...:
  - Few factor loadings distant from zero
  - Several factor loadings close to zero
- A suitable factor rotation can provide such result

- Factor rotation methods:
  - Varimax: orthogonal rotation that provides few factor loadings far from zero and several factor loadings close to zero
  - Equimax
  - Quartimax
  - ...

# Summary

- Introduction to Factor Analysis (FA)
- Factor Model
- Parameter estimation and factor rotation in FA
- How to proceed with FA...
- Principal Component Analysis (PCA)

# How to proceed with FA...

- 1. Standardization of variables
- 2. Compution of the matrix of covariances (correlations) of the original response variables
- 3. Factor extraction and factor loadings estimation
- 4. Factor rotation for a easier interpretation of the factors
- 5. Interpretation of the factors
- 6. Computation of the coefficients of factor scores (weights of the linear combinations which represent the factors as function of the original observed variables)

# How to proceed with FA...

How many factors?

- No unique answer...it depends on the problem and on the observed data
- **Apriori method**: based on the experience of the researcher and on the theory
- Method based on eigenvalues: only factors with eigenvalues >1 must be considered; the eigenvalue represents the amount of variance explained by the factor
- Method based on the least percentage of explained variance: only factors which explain at least 10% of variance must be considered

### How to proceed with FA...

Graphical solution of the Scree Test (Scree Plot):

- 1. Eigenvalues are represented in a graph where one axis correspond to the factors and the other axis correspond to the eigenvalues (factors are sorted according to the eigenvalue)
- 2. The first *q* factors are are extracted according to one of the following rules:
  - a. The (q+1)-th factor has eigenvalue less than a specific treshold (e.g. 1)
  - b. The difference between the (q+1)-th and the q-th eigenvalue is not considerable

## Summary

- Introduction to Factor Analysis (FA)
- Factor Model
- Parameter estimation and factor rotation in FA
- How to proceed with FA...
- Principal Component Analysis (PCA)

- Also known as Hotelling transformation and Karhunen-Loeve expansion
- Among the oldest and most common methods of multivariate analysis
- Proposed by Pearson in 1901 and then (independently) by Hotelling in 1933
- It provides an effective method for representing multivariate data in a space with a reduced dimensionality (*parsimonious summarization of data*), for simplifying the statistical analysis
- Useful method for explorative analyses or prediction models

#### • Goals:

- Reduce the dimensionality of the dataset
- Detect new informative variables which can replace the observed original variables
- Use a graphical representation of data to get some preliminary information previous to a following analysis
- Reduce the number of explanatory variables in a multiple regression model in the presence of multicollinearity

#### • Result:

- The original variability of the observed response variables  $X_1, \ldots, X_k$  (which usually are correlated between each other) can be described by new <u>uncorrelated</u> variables  $Y_1, \ldots, Y_k$ , which are linear combinations of the original observed variables  $X_1, \ldots, X_k$
- The variables  $Y_1, \ldots, Y_k$  are sorted according to the degree of importance, i.e.  $Y_1$  is the variable which «explains» the greatest proportion of variability;  $Y_2$  is the variable (uncorrelated with  $Y_1$ ) which «explains» the greatest proportion of the remaining variability; etc.
- $Y_1, \dots, Y_k$ , are called **PRINCIPAL COMPONENTS**

- Assumptions:
  - $X_1, \dots, X_k$  follow a (multivariate) distribution with mean vector  $\mu$  and covariance matrix  $\Sigma$ ;
  - The values in  $\mu$  and  $\Sigma$  are finite;
  - The rank of  $\Sigma$  is q < k;
  - The dataset is given by the  $n \times k$  matrix  $[x_{ij}]$ , i=1,...,n; j=1,...,q

- S and R matrices
  - $\circ$  A suitable estimate of  $\Sigma$  is provided by the sampling covariance matrix  $S = [s_{ii}]$  which includes the necessary information for PCA
  - As a matter of fact the information for PCA is usually provided by the matrix of sampling correlations  $R = [r_{ii}]$ , especially when the magnitudes, the units of measurement or the variabilities of the original variables are very much different
  - $\circ$  Principal Components (PC) extraction from R is equivalent to PC extraction from S after standardization of the original variables

• First Principal Component:

1. 
$$Y_1 = a_{11}X_1 + a_{21}X_2 + \dots + a_{k1}X_k$$

- 2. Detect the values  $a_{11}, \dots, a_{k1}$  which maximize the variance of  $Y_1$ , formally:
  - find  $a_{11}^*, a_{21}^*, \dots, a_{k1}^*$  such that 1.  $\max[Var(Y_1)] = Var(a_{11}^*X_1 + a_{21}^*X_2 + \dots + a_{k1}^*X_k) =$   $= \sum_{j,r} a_{j1}^* a_{r1}^* s_{jr}$ 2.  $\sum_j (a_{j1}^*)^2 = 1$
  - $\lambda_1 = \max[Var(Y_1)] = \sum_{j,r} a_{j1}^* a_{r1}^* s_{jr}$  max eigenvalue of *S*
  - $(a_{11}^*, \dots, a_{k1}^*)'$  eigenvector of S which corresponds to  $\lambda_1$

• Second Principal Component:

1. 
$$Y_2 = a_{12}X_1 + a_{22}X_2 + \dots + a_{k2}X_k$$

- 2. Detect the values  $a_{12}, \dots, a_{k2}$  which maximize the variance of  $Y_2$ , formally:
  - find  $a_{12}^*, a_{22}^*, \dots, a_{k2}^*$  such that 1.  $\max[Var(Y_2)] = Var(a_{12}^*X_1 + a_{22}^*X_2 + \dots + a_{k2}^*X_k) =$   $= \sum_{j,r} a_{j2}^* a_{r2}^* s_{jr}$ 2.  $\sum_j (a_{j2}^*)^2 = 1$ 3.  $\sum_j a_{j1}^* a_{j2}^* = 0$ 4.  $\max[Var(Y_1)] = \sum_{j=1}^{r} a_{j1}^* a_{j2}^* = 0$
  - $\lambda_2 = \max[Var(Y_2)] = \sum_{j,r} a_{j2}^* a_{r2}^* s_{jr} 2^{nd}$  max eigenvalue of S
  - $(a_{12}^*, \dots, a_{k2}^*)'$  eigenvector of S which corresponds to  $\lambda_2$
- Following Principal Components: same iterative procedure...

- Main differences between FA and PCA:
  - 1. In FA we distinguish between common factors and unique factors while in PCA we have only common factors
  - 2. In FA the communality is unknown and must be estimated while in PCA it is equal to 1
  - 3. In FA the number of common factors is less than the number of observed original variables (q < k) while in PCA the number of components is equal to the number of observed orginale variables (q=k)
  - 4. In FA the estimation of the communality follows an iterative method while PCA does not include iterations

## R exercises

#### Problem 1 - Passito

- Perform a FA on the 17 response variables of the questionnaire which represent habits, behaviors and preferences of wine drinkers (from variable LIKE\_WINE to variable PRICE) to detect new q<17 variables which «explain» data
- Perform a PCA on the 17 response variables of the questionnaire with the same goal

## R exercises

#### Problem 2 - Mall

- Perform a FA on the 5 observed response variables to detect new q<5 variables which «explain» data
- Perform a PCA on the 5 response variables with the same goal

#### R exercises

#### Problem 3 – Eating Habits

- Perform a FA on the 12 observed response variables (from *Alcoholic.Beverages* to *Milk*) to detect new *q*<12 variables which «explain» data</p>
- Perform a PCA on the 12 response variables with the same goal