Salta ai contenuti. | Salta alla navigazione

Strumenti personali

MACHINE LEARNING FOR QUANTITATIVE ECONOMICS

Anno accademico e docente
Non hai trovato la Scheda dell'insegnamento riferita a un anno accademico precedente? Ecco come fare >>
English course description
Anno accademico
2022/2023
Docente
ANTONIO MUSOLESI
Crediti formativi
7
Percorso
Green economy and sustainability
Periodo didattico
Secondo Semestre
SSD
SECS-P/05

Obiettivi formativi

The course aims at ii) presenting some intermediate econometric methods (Instrumental variables, panel data, and time series models), ii) discussing the use of statistical learning methods to make causal analysis, and iii) providing computational tools using R.


At the end of the course, the student is able to use some intermediate econometric and machine learning methods in order to study causal relations and to apply them using R.

Prerequisiti

Probability and statistical inference; basic linear algebra; basic econometrics

Contenuti del corso

Cross-sectional regression:
- review of basic notions
- dealing with endogeneous regressors
-using the (linear) regression model for causal inference when the explanatory variable is discrete


Time-series regression:
basic notions

Panel-data:
- unobserved heterogeneity and endogeneity
- models with heterogeneous slopes
- dealing with cross-sectional dependence


Machine learning for causal analysis
- resampling methods
- model selection and regularization
- moving beyond linearity: parametric and nonparametric regression

Metodi didattici

Lectures and lab exercises

Modalità di verifica dell'apprendimento

Oral examination

Testi di riferimento

Wooldridge J., Introductory Econometrics: A Modern Approach

James, G., Witten, D., Hastie, T., & Tibshirani, R., An introduction to statistical learning with Applications in R

Kleiber, C., & Zeileis, A., Applied econometrics with R