

University of Ferrara

Stefano Bonnini & Valentina Mini

Simple Linear Regression Analysis: What about the inference?

Lecture 5 2019, Feb 22nd

The state of the art:

-We are studying **the linear relationship** between unit-price (x) and number of total cakes sold per week (y).

-The **goodness of fit (R²)** is 0.4588: thus the 45.88% of total variance in y is explained by our model (on the other side, the 54.12% of that variance is still unexplained!)

- We **graphically tested the 4 main linear regression conditions** (plot: error terms and its relationship with the explanatory variable)

Now, our final aim is to understand whether this relationship between x and y does exist within the population as a whole

We start from sample and we're trying to estimate true population parameters

Because we analyze a sample (and not the entire population) we need to make **inference** based on our sample.

We know that b₂ is unlikely to be exactly equals β_2 ,

But, HOW CONFIDENT CAN WE BE THAT THERE IS AT LEAST A POSITIVE LINEAR RELATIONSHIP within the population BETWEEN UNIT-PRICE (x) AND TOTAL SOLD-CAKES (y)?

HOW CONFIDENT CAN WE BE THAT THERE IS AT LEAST A NONZERO LINEAR RELATIONSHIP WITHIN THE POPULATION?

We may proceed in two different ways:

- 1) Testing the null/alternative hypothesis using t-statistic and T-student
- 2) Comparing the significance level (α) and the p-value of the coefficient

Central question:

Is there a linear relationship between unit_price (X) and the number of cakes sold in a week (Y) in the general population?

Null and alternative hypotheses:

 $H_0: \beta_1 = 0$ (no linear relationship)

H₁: $\beta_1 \neq 0$ (linear relationship does exist)


```
> summary(reg lin)
Call:
lm(formula = y \sim x)
Residuals:
  Min
         1Q Median
                        30
                              Max
-76.16 -59.47 20.78 41.07 78.60
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
                        51.788
            133.521
                                 2.578 0.0147 *
                         9.134
             47.577
                                 5.208 1.08e-05 ***
х
               0.05 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1
Signif. codes:
Residual standard error: 53.62 on 32 degrees of freedom
Multiple R-squared: 0.4588, Adjusted R-squared: 0.4419
F-statistic: 27.13 on 1 and 32 DF, p-value: 1.084e-05
                    b_1
                              T-stat = 47.577 / 9.134 = 5.2088
```

NOW WE NEED TO COMPUTE THE $t_{\alpha/2}$ value:

- i) The significance level (α) is defined a priori (considering the value of our research) : let's imagine we want a **confidence level of 95%,** so our **significance level is (1-95** = 0.05) $\rightarrow \alpha = 0.05 \rightarrow \alpha = 0.05 \rightarrow \alpha / 2 = 0.05 / 2 = 0.025$
- ii) The degree of freedom (d.f.) for linear regression is n-2: thus in our case d.f. = 34-2 = 32
- iii) Using those information, let's check on a **T-student** table to discover the $t_{a/2}$ value: 2.037

Tavola della distribuzione T di Student

/	$\langle \rangle$	
		\ ~
/	_	-
	0	$l_{(\alpha,dl)}$

Gradi di libertà				Area nella coda di des		tra			
	0.1	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	0.0008
1	3.078	6.314	12.706	15.894	31.821	63.656	127.321	318.289	636.578
2	1.886	2.920	4.303	4.849	6.965	9.925	14.089	22.328	31.600
3	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.214	12.92
4	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.894	6.869
6	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.95
7	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.400
8	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.04
9	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.78
10	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.58
11	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.43
12	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.31
13	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.22
14	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.14
15	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.07
16	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.01
17	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.96
18	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.610	3.92
19	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.88
20	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.85
21	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.81
22	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.79
23	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.76
24	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.74
25	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.72
26	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.70
27	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.68
28	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.67
29	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.66
30	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.64
31	1.309	1.696	2.040	2.144	2.453	2.744	3.022	3.375	3.63
32	1.309	1.694	(2.037)	2.141	2.449	2.738	3.015	3.365	3.62
33	1.308	1.692	2.035	2.138	2.445	2.733	3.008	3.356	3.61

Last step: the comparison of computed values

T-stat = 5.2088 $t\alpha/2$ = 2.037

T-stat > $t\alpha/2 \rightarrow$ the statistic falls within the rejection area!

We reject the null hypothesis (H₀) , thus:

there is sufficient evidence that (at a 95% of confidence level) within the population the unit-price affects the number of cakes sold in a week

We may proceed in two different ways:

- 1) Testing the null/alternative hypothesis
- 2) Comparing the significance level (α) and the p-value of the coefficient

2)Comparing the significance level (α) and the p-value of the coefficient

Central question:

Is there a linear relationship between unit_price (X) and the number of cakes sold in a week (Y) in the general population?

Compare:

The level of significance (α)
The p(value) of the slope coefficient

Decision rule:

If the p-value $< \alpha \rightarrow$ we reject H0

2)Comparing the significance level (α) and the p-value of the coefficient

let's imagine we want a **confidence level of 95%**, so our **level of significance is (1-95** = $(0.05) \rightarrow \alpha = 0.05$

The **p-value** associated to the b1 coefficient ≈ 0

```
> summary(reg lin)
Call:
lm(formula = y \sim x)
                                           significance:
Residuals:
           10 Median
   Min
                         30
                               Max
-76.16 -59.47 20.78 41.07
                             78.60
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                  2.578
(Intercept) 133.521
                         51.788
                                          0.0147 *
                                  5.208 1.08e-05 ***
                          9.134
              47.577
х
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
Residual standard error: 53.62 on 32 degrees of freedom
Multiple R-squared: 0.4588, Adjusted R-squared: 0.4419
```

F-statistic: 27.13 on 1 and 32 DF, p-value: 1.084e-05

The p-value is $P(t \neq 5.208) \cong 0$

We compare the p-value to our level of 0.05 (α) > 0 (p-value) \rightarrow

> there is sufficient evidence that (at a 95% of confidence level) within the population the unit-price affects the number of cakes sold in a week