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• Hierarchical methods provide a family of partitions of the

statistical units with a number g of groups which varies from n to 1:

o Trivial starting partition: g=n groups of 1 unit

o Intermediate partitions: 1 < g < n

o Final partition: g=1 group of n units

Example: wine survey on Passito

oTrivial starting partition: g= 386 (each customer is one group)

oIntermediate partitions: number of groups varies from 385 to 2

oFinal partition: g=1 (all 386 customers represent one group)
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Methods which use the n× n matrix of distances (or of proximities) D:

1. The two nearest units (with minimum distance or maximum proximity) are

grouped

2. A new (n-1)×(n-1) D matrix is computed, which represents the distances (or

proximities) between the n-1 clusters obtained in the previous step (n-2

clusters with 1 unit and 1 cluster with 2 units)

3. In the new D matrix the minimum distance (or maximum proximity) is

detected and the two corresponding clusters are grouped

4. Previous steps are repeated, according to an iterated procedure, where at step

t we have g=n-t+1 groups and a (n-t+1)×(n-t+1) D matrix, and the two nearest

clusters are grouped, with t=1,…,n

5. At the end of the procedure (t=n) we have 1 group with all the n units
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Ex: 

Sptep 1

Step 2

….

Lower distance within 
our statistical units

After the first step we cluster A and B together and we treat it as a single entity. 
Now we re-compute the distance matrix among pairs of our 4 elements (AB, C, D, E )

Lower distance within 
our statistical units

After the second step we cluster D and E together and we treat it as a single entity. 
Now we re-compute the distance matrix among pairs of our 3 elements (AB, C, DE)
And so on 
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Criteria for computing the distance between two clusters (groups):

Let C1 and C2 be two clusters witn n1 and n2 units respectively

• Single linkage or nearest neighbour method:
d(C1,C2)=min( diu ) i∈C1 , u∈C2

• Complete linkage or farthest neighbour method:
d(C1,C2)=max( diu ) i∈C1 , u∈C2

• Average linkage between groups method or UPGMA
(Unweighted Pair-Group Method Using arithmetic Averages):

d(C1,C2)= Σi,u diu / (n1n2) , i∈C1 , u∈C2

• Average linkage within groups method (arithmetic average of
the distances between all the m=n1+n2 units of the two clusters
joined together):

d(C1,C2)= Σi>u diu / [m(m-1)/2] , i,u∈ C1∪C2
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…. Among all pairs 

Single linkage

Complete linkage

Average linkages: 
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Remarks:

• With the nearest neighbour method (SINGLE LINKAGE) we can have
the «chain effect»:

• two far units can be joined into the same cluster in the presence
of a sequence of intermediate points

• With the farthest neighbour method (COMPLETE LINKAGE) we can
have compact groups but with an approximately hyperspherical
shape

• Average linkage method can be a good compromise to have internal
cohesion and external separation between the groups
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Criteria for evaluating the partitioning:

Let C1 and C2 be two clusters witn n1 and n2 units respectively

• Given a partition of the units in g groups, the proportion of global
variability explained by this partition is:

R2 =1-WD / TD = BD / TD  

This index takes values between 0 and 1 and the smaller the
number g (of groups) the smaller the index value
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Dendogram
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The state of the art
CA: aim = identify the lower number of clusters such that

The units belonging the same cluster 
are more similar than …�

The units belonging different clusters

High within-cluster similarity
Low within-cluster variance

Low between-cluster similarity
High between-cluster variance

To identify clusters we should define

Distance or similarity Grouping’s rule

Distance:

-Euclidean

-Manhattan

-Minkosky

-Chebichev

Similarity:
1. case of 

dichotomous var.
2. case of 

categorical var.
:

*Ind. of co-presences
(Russel&Rao; Jaccart)

*Ind. Co-presences 
and co-absences

(Sokal & Michener)

Hierarchical methods Non Hier. methods

Divisive: 

-Edwards & 
Cavalli Sforza
(trace of the 

deviance matrix)

-Friedman &Rubin
(min. the deviance
matrix determinant)

Agglomerative: 

-Single linkage
-Complete linkage
-Average linkage

•Centroide method
• Ward method


