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CA hierarchical methods

e Hierarchical methods provide a family of partitions of the
statistical units with a number g of groups which varies from n to 1:
O Trivial starting partition: g=n groups of 1 unit
O Intermediate partitions: 1<g<n

O Final partition: g=1 group of n units

Example: wine survey on Passito
OTrivial starting partition: g= 386 (each customer is one group)
Olntermediate partitions: number of groups varies from 385 to 2

OFinal partition: g=1 (all 386 customers represent one group)



CA hierarchical methods

Methods which use the nxn matrix of distances (or of proximities) D:

1.

The two nearest units (with minimum distance or maximum proximity) are
grouped

A new (n-1)x(n-1) D matrix is computed, which represents the distances (or
proximities) between the n-1 clusters obtained in the previous step (n-2
clusters with 1 unit and 1 cluster with 2 units)

In the new D matrix the minimum distance (or maximum proximity) is
detected and the two corresponding clusters are grouped

Previous steps are repeated, according to an iterated procedure, where at step
t we have g=n-t+1 groups and a (n-t+1)X(n-t+1) D matrix, and the two nearest

clusters are grouped, with t=1,...,n

At the end of the procedure (t=n) we have 1 group with all the n units



EX: A B C D E
A 0 1 5 6 8
B b= > Lower distance within
Sptep 1 DEIJ _ C ,.-,@ 3 0 4 6 our statistical units
D 6 8 4 0 2
E 8 7 6 2 0

After the first step we cluster A and B together and we treat it as a single entity.
Now we re-compute the distance matrix among pairs of our 4 elements (AB, C, D, E)

ABC D E

Step 2 AB O 3 6 7
C 3 0 4 6 Lowerdistance within
D? = D 6 4 0 @ our statistical units

E 7 6 2 0

After the second step we cluster D and E together and we treat it as a single entity.
Now we re-compute the distance matrix among pairs of our 3 elements (AB, C, DE)
And so on



CA hierarchical methods

Criteria for computing the distance between two clusters (groups):

Let C, and C, be two clusters witn n, and n, units respectively

Single linkage or nearest neighbour method:
d(C,,C,)=min( d,, )i/, , UL,

Complete linkage or farthest neighbour method:
d(C,,C,)=max(d,, )i C;,ullC,

Average linkage between groups method or UPGMA
(Unweighted Pair-Group Method Using arithmetic Averages):
d(C,,Cp)= 3, di, / (nyny) , I, , UL,

Average linkage within groups method (arithmetic average of
the distances between all the m=n,+n, units of the two clusters
joined together):

d(C,,C)= 5., dyy/ [M(M-1)/2] , i, C, [TC, .
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Complete linkage

Average linkages:




CA hierarchical methods

Remarks:

 With the nearest neighbour method (SINGLE LINKAGE) we can have
the «chain effect»:
« two far units can be joined into the same cluster in the presence
of a sequence of intermediate points

 With the farthest neighbour method (COMPLETE LINKAGE) we can
have compact groups but with an approximately hyperspherical
shape

 Average linkage method can be a good compromise to have internal
cohesion and external separation between the groups



CA hierarchical methods

Hierarchical methods which also use the original matrix of observed
data:

 Centroid method:
d(Cl,, Cz) —_ d(fl’,xz)

the distance between two clusters is equal to the distance between
the two k-dimensional vectors of means computed on the n, units of
C, and the n, units of C,



CA hierarchical methods

Hierarchical methods which also use the original matrix of observed
data:

« Ward method or least deviance method.

Uses the breakdown of the total deviance:
N2
TD = Zk " 1(xl] — x]-)
WD = Z [E ?=1(xu le) ] 1= 1DWl

BD = %j. 1% RACTREN
TD =WD + BD

xj: sample mean of j-th variable
Xj . sample mean of j-th variable in cluster /

At each step of the procedure, the aggregation which causes the
least increasing of DW is chosen o



CA hierarchical methods

Criteria for evaluating the partitioning:

Let C, and C, be two clusters witn n,; and n, units respectively

o Given a partition of the units in g groups, the proportion of global
variability explained by this partition is:

R2=1-WD/TD=BD/TD

This index takes values between 0 and 1 and the smaller the
number g (of groups) the smaller the index value
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CA hierarchical methods

Dendogram

Similarity

Dendrogram with Single Linkage and Euclidean Distance
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The state of the art

CA: aim = identify the lower number of clusters such that

Comm—

T~

The units belonging the same cluster
are more similar than ...>

High within-cluster similarity

Low within-cluster variance

N

r

The units belonging different clusters

Low between-cluster simi

To identify clusters we should define

, 

Distance or similarity

Distance: Similarity:
1. case of
"Euclidean dichotomous var.
2. case of
-Manhattan categorical var.
_Mi *Ind. of co-presences
Minkosky (Russel&Rao; Jaccart)
-Chebichev *Ind. Co-presences
and co-absences
(Sokal & Michener)

Grouping’s rule

Hierarchical r_nethods

Divisive:

-Edwards &

Cavalli Sforza

(trace of the
deviance matrix)

-Friedman &Rubin
(min. the deviance
matrix determinant)

——

Agglomerative:

-Single linkage
-Complete linkage
-Average linkage

*Centroide method
 Ward method

LG arity
High between-cluster variance

Non Hier. methods




