Stefano Bonnini \& Valentina Mini

Matrix algebra for multivariate problems

December 5, 2018

Matrix algebra: linearly independent vectors

Vectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\mathrm{k}}$ are called linearly dependent
if there exist numbers $\lambda_{1}, \ldots, \lambda_{K}$ not all zero such that

$$
\lambda_{1} x_{1}+\ldots+\lambda_{k} x_{k}=0 .
$$

Otherwise the k vectors are linearly independent.

Matrix algebra: linearly independent vectors

Let \boldsymbol{W} be a subspace of \boldsymbol{R}^{n}.
Then a basis of \boldsymbol{W} is a maximal linearly independent set of vectors.

Every basis of \boldsymbol{W} contains the same (finite) number of elements.
This number is the dimension of \boldsymbol{W}.

If $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\mathrm{k}}$ is a basis for \boldsymbol{W} then every element \boldsymbol{x} in \boldsymbol{W} can be expressed as a linear combination of $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\mathrm{k}}$.

Matrix algebra: linearly independent vectors

Example:
The dimension of $\mathbf{W}=\boldsymbol{R}^{3}$ is 3 .
A basis for \boldsymbol{R}^{3} is $\boldsymbol{x}_{1}=(1,0,0)^{\prime}, \boldsymbol{x}_{2}=(0,1,0)^{\prime}$ and $\boldsymbol{x}_{3}=(0,0,1)^{\prime}$.
As a matter of fact $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ and \boldsymbol{x}_{3} are linearly independent and every vector
$\boldsymbol{a}=\left(a_{1}, a_{2}, a_{3}\right)^{\prime}$ can be expressed as linear combination of
$\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ and $\boldsymbol{x}_{3}: \boldsymbol{a}=a_{1} \boldsymbol{x}_{1}+a_{2} \boldsymbol{x}_{2}+a_{3} \boldsymbol{x}_{3}$

Matrix algebra: the rank

The rank of a $n \times k$ matrix \boldsymbol{A} is defined as the maximum number of linearly independent columns (rows) in \boldsymbol{A}.

The following properties hold for the rank of \boldsymbol{A}, denoted with $r(\boldsymbol{A})$:

1. $r(\boldsymbol{A})$ is the largest order of those submatrices of \boldsymbol{A} with non null determinants.
2. $0 \leq r(A) \leq \min (n, k)$
3. $r(\boldsymbol{A})=r\left(\boldsymbol{A}^{\prime}\right)$
4. $r\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)=r\left(\boldsymbol{A}^{\prime}\right)=r(\boldsymbol{A})$
5. If $n=k$ then $r(\boldsymbol{A})=k$ if and only if A is non-singular

Example:
$\mathbf{A}=\left(\begin{array}{ccc}1 & -1 & 3 \\ -2 & 2 & 5 \\ 1 & -1 & 9\end{array}\right) \operatorname{det}(\mathbf{A})=0 \quad\left|\begin{array}{cc}1 & -1 \\ -2 & 2\end{array}\right|=0 \quad\left|\begin{array}{cc}-1 & 3 \\ 2 & 5\end{array}\right|=-11 \neq 0$
Thus the $r(\boldsymbol{A})=2$

Matrix algebra: eigenvalue and eigenvector

If \boldsymbol{A} is a square matrix of order n, in some problems we are interested in finding a vector x and a scalar λ which satisfy the following property:

A trivial solution is $\boldsymbol{x}=\mathbf{0}$, any $\lambda \in \boldsymbol{R}$

Matrix algebra: the eigenvalues

The n eigenvalues of $\boldsymbol{A} \lambda_{1}, \ldots, \lambda_{n}$ are the n solutions of the characteristic equation

$$
|\mathbf{A}-\lambda \mathbf{I}|=\mathbf{0}
$$

Properties of the eigenvalues of \boldsymbol{A} :

1. $|\boldsymbol{A}|=\Pi_{i} \lambda_{i}$
2. $\operatorname{tr}(\boldsymbol{A})=\Sigma_{i} \lambda_{i}$
3. $r(\boldsymbol{A})$ equals the number of non-zero eigenvalues
4. The set of all eigenvectors for an eigenvalue λ_{i} is called the eigenspace of \boldsymbol{A} for λ_{i}
5. Any symmetric $n \times n$ matrix \boldsymbol{A} can be written as $\boldsymbol{A}=\Gamma \Lambda \Gamma^{\prime}=\Sigma_{i} \lambda_{i} \gamma_{(i)} \gamma_{(i)}$, where Λ is a diagonal matrix of eigenvalues of A and Γ is an orthogonal matrix whose columns are eigenvectors with $\gamma_{(i)}{ }^{\prime} \gamma_{(i)}=1$

Matrix algebra: examples

Example:
$\mathbf{A}=\left(\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right) \quad \begin{array}{ccc}\text { The characteristic equation is: } & \left.\begin{array}{ccc}2-\lambda & -2 & 3 \\ 1 & 1-\lambda & 1 \\ 1 & 3 & -1-\lambda\end{array} \right\rvert\,=0, ~ & \square\end{array}$

By computing the determinant we have:

$$
\begin{aligned}
(2-\lambda) \cdot & \left.\cdot \begin{array}{cc}
1-\lambda & 1 \\
3 & -1-\lambda
\end{array}|-1 \cdot| \begin{array}{cc}
-2 & 3 \\
3 & -1-\lambda
\end{array}|+1 \cdot| \begin{array}{ll}
-2 & 3 \\
1-\lambda & 1
\end{array} \right\rvert\,= \\
& =(2-\lambda)\left[-1+\lambda^{2}-3\right]-2-2 \lambda+9-2-3+3 \lambda=(\lambda+2)(\lambda-1)(3-\lambda)=0
\end{aligned}
$$

The solutions represent the 3 eigenvalues of \boldsymbol{A} :

$$
\lambda_{1}=1 \quad \lambda_{2}=-2 \quad \lambda_{3}=3
$$

Matrix algebra: the dominant eigenvalue

The eigenvalue with maximum absolute value $\lambda_{3}=3$ is called dominant

There is an infinite number of eigenvectors x which satisfy $(A-3 I) x=0$

$$
\left(\begin{array}{ccc}
-1 & -2 & 3 \\
1 & -2 & 1 \\
1 & 3 & -4
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Lab using R: matrix

Please, open R and follow the professor's instruction

