Stefano Bonnini \& Valentina Mini

Simple Linear Regression Analysis

Lecture 3
December 14, 2018

structure of the lecture

1) Linear Regression Model: theoretical approach
2) Linear Regression Model: a step-by-step simulation analysis
3) LRM in R: practice and exercises

\boldsymbol{x}	y
1	2
2	4
3	5
4	4
5	5

contents

- Linear regression model: main concepts
- Regression coefficients: bo and b1 - The Least Squares Method
- Interpretation of the coefficients
- How well the model is fitting data? The coefficient of determination $\mathbf{r}^{\mathbf{2}}$
- The estimates' standard error
- 4 basic assumptions for the linear Regression Model
- The significance: is the model statistically significant?
- Inference
- Exercises using R

Main targets

- Use of one explanatory variable (x) to estimate a dependent variable (y)

$$
\begin{aligned}
& y=\text { dependent variable } \\
& x=\text { independent or explanatory variable }
\end{aligned}
$$

- Estimate and find the meaning of the regression coefficients boe b1
- Do prevision of y values, based on x (n.b. range)
- Do evaluation of regression's assumptions respect
- Do inference (on coefficients and Y values).

Simple Linear Regression Analysis:
 checking the relationship between two variables

- A scatter plot can be used to show the relationship between two variables
- Correlation analysis is used to measure the strength of the association (linear relationship) between two variables
- Correlation is only concerned with strength of the relationship
- No causal effect is implied with correlation

Simple Linear Regression Analysis: checking the relationship between two variables

- Examples of scatter plots

Simple Linear Regression Analysis: checking the relationship between two variables

Using the scatter plot we do individuate the possible relationship between two observed variables

Linear positive relation

Exponential relation

Linear negative relation

U relation

Non-linear relation

Absence of relation

Simple Linear Regression Analysis: checking the relationship between two variables

- Example of a correlation matrix

```
> cor(torta)
```

	settimana	vendita	prezzo	pubb	pr_non. surge	pr _panna	vendita.panna	giorni.di.festa
settimana	1.00000000							
vendita	0.03360076	1.00000000						
prezzo	-0.10014845	-0.10209557	1.000000000					
pubb	0.19279946	0.19514066	-0.001526334	1.000000000				
prezzo_non.surge	-0.33221180	-0.36502135	-0.113666725	0.052860721	1.00000000			
prezzo_panna	-0.23453792	-0.05114394	0.654599388	-0.090582798	-0.01416071	1.00000000		
vendita.panna	0.05384546	0.80734983	-0.111172219	-0.033649346	-0.30566582	-0.08676635	1.00000000	
giorni.di.festa	0.09359796	-0.33030785	-0.215219045	0.025079631	0.32507725	-0.07861741	-0.12425313	1.00000000

-Correlation is only concerned with strength of the relationship
-No causal effect is implied with correlation

Simple Linear Regression Analysis: aim

- Regression analysis is used to:
- Predict the value of a dependent variable Y based on the value of one independent variable
- Explain the impact on the dependent variable of changes in independent (explanatory) variable X

Independent or explanatory variable: the variable used to predict or explain the dependent variable

Simple Linear Regression Analysis: only one explanatory variable (x)

- Relationship between Y and X is described by a linear function
- Only one independent variable, $\mathrm{X} \Rightarrow$ Simple Linear Regression Model
- $X \geq 2$ independent variables, $X_{1}, \ldots, X_{k} \Rightarrow$ Multiple Linear Regression Model

Simple Linear Regression Analysis: the model

Simple Linear Regression Model (SLM)

Simple Linear Regression Analysis: graphical representation

Simple Linear Regression Analysis: the equation

The simple linear regression equation provides an estimate of the population regression line

Estimated

Simple Linear Regression Analysis: the least squares method (OLS)

b_{0} and b_{1} are obtained by finding the values that minimize the sum of the squared differences between Y and \hat{Y} :

$$
\min \sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\min \sum\left(Y_{i}-\left(b_{0}+b_{1} X_{i}\right)\right)^{2}
$$

Simple Linear Regression Analysis: the least squares method (OLS)

- Suppose that we have n pairs of observations $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.

Deviations of the data from the estimated regression model.

Simple Linear Regression Analysis: the least squares method (OLS)

- The method of least squares is used to estimate the parameters, β_{0} and β_{1} by minimizing the sum of the squares of the vertical deviations.

Deviations of the data from the estimated regression model.

Simple Linear Regression Analysis: the least squares method (OLS)

$$
L=\sum_{i=1}^{n} \epsilon_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

The least squares estimators of β_{0} and β_{1}, say, $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, must satisfy

$$
\begin{aligned}
& \left.\frac{\partial L}{\partial \beta_{0}}\right|_{\hat{\beta}_{0} \hat{\beta}_{1}}=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)=0 \\
& \left.\frac{\partial L}{\partial \beta_{1}}\right|_{\hat{\beta}_{0} \hat{\beta}_{1}}=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right) x_{i}=0
\end{aligned}
$$

Simple Linear Regression Analysis: the least squares method (OLS)

Simplifying these two equations yields

$$
\begin{align*}
n \hat{\beta}_{0}+\hat{\beta}_{1} \sum_{i=1}^{n} x_{i} & =\sum_{i=1}^{n} y_{i} \\
\hat{\mathrm{\beta}}_{0} \sum_{i=1}^{n} x_{i}+\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} & =\sum_{i=1}^{n} y_{i} x_{i} \tag{11-6}
\end{align*}
$$

Equations 11-6 are called the least squares normal equations. The solution to the normal equations results in the least squares estimators $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$.

Simple Linear Regression Analysis: least squares estimates

Definition

The least squares estimates of the intercept and slope in the simple linear regression model are

$$
\begin{gather*}
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} \tag{11-7}\\
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} y_{i} x_{i}-\frac{\left(\sum_{i=1}^{n} y_{i}\right)\left(\sum_{i=1}^{n} x_{i}\right)}{n}}{\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}} \tag{11-8}
\end{gather*}
$$

where $\bar{y}=(1 / n) \sum_{i-1}^{m} y_{i}$ and $\bar{x}=(1 / n) \sum_{i=1}^{n} x_{i}$

Simple Linear Regression Analysis: least squares estimates

- $b_{0}=\hat{\beta}_{0}$ is the estimated mean value of Y when the value of X is zero
- $\mathrm{b}_{1}=\hat{\beta}_{1}$ is the estimated change in the mean value of Y as a result of a oneunit change in X

Simple Linear Regression Analysis: an example

Ex:

- A real estate agent wishes to examine the relationship between the selling price of a house and its size (measured in square feet)
- A random sample of 10 houses is selected
- Dependent variable $(Y)=$ house price in $\$ 1000$ s
- Independent variable (X) = square feet

Simple Linear Regression Analysis: an example

House Price in \$1000s (Y)	Square Feet (X)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Simple Linear Regression Analysis: an example

House price model: Scatter Plot

Simple Linear Regression Analysis:

 an example| | Y | X | $(Y-\bar{Y})$ | $(X-\bar{X})$ | $(Y-\hat{Y})^{2}$ | $(X-\bar{X})^{2}$ | $(X-\bar{X})(Y$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 245 | 1400 | -41.5 | -315 | 1722.25 | 99225 | 13072.5 |
| | 312 | 1600 | 25.5 | -115 | 650.25 | 13225 | -2932.5 |
| | 279 | 1700 | -7.5 | -15 | 56.25 | 225 | 112.5 |
| | 308 | 1875 | 21.5 | 160 | 462.25 | 25600 | 3440 |
| | 199 | 1100 | -87.5 | -615 | 7656.25 | 378225 | 53812.5 |
| | 219 | 1550 | -67.5 | -165 | 4556.25 | 27225 | 11137.5 |
| | 405 | 2350 | 118.5 | 635 | 14042.25 | 403225 | 75247.5 |
| | 324 | 2450 | 37.5 | 735 | 1406.25 | 540225 | 27562.5 |
| | 319 | 1425 | 32.5 | -290 | 1056.25 | 84100 | -9425 |
| | 255 | 1700 | -31.5 | -15 | 992.25 | 225 | 472.5 |
| | | | | | | | |
| sum | 2865 | 17150 | 0 | 0 | 32600.5 | 1571500 | 172500 |
| mean | 286.5 | 1715 | | | 3260.05 | 157150 | 17250 |

$$
\begin{aligned}
& b_{1}=\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{172500}{1571500}=0.109768 \\
& b_{0}=\hat{\beta}_{0}=\bar{y}-b_{1} \bar{x}=286.5-0.109768 \cdot 1715=98.24833
\end{aligned}
$$

Simple Linear Regression Analysis: an example

Regression Statistics

Simple Linear Regression Analysis: an example

House price model: Scatter Plot and Prediction Line

Simple Linear Regression Analysis: an example

Predict the price for a house with 2000 square feet:
house price $=98.25+0.1098$ (sq.ft.)

$$
\begin{aligned}
& =98.25+0.1098(2000) \\
& =317.85
\end{aligned}
$$

The predicted price for a house with 2000 square feet is $317.85(\$ 1,000$ s $)=\$ 317,850$

Simple Linear Regression Analysis:

 the total variation- Total variation is made up of two parts:

$$
\text { SST }=S S R+S S E
$$

Total Sum of
Squares

> Regression Sum of Squares

Error Sum of Squares

$$
\text { SST }=\sum\left(Y_{i}-\bar{Y}\right)^{2} \quad \text { SSR }=\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2} \quad \text { SSE }=\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

where:
$\bar{Y}=$ Mean value of the dependent variable
$Y_{i}=$ Observed value of the dependent variable
$\hat{Y}_{i}=$ Predicted value of Y for the given X_{i} value

Simple Linear Regression Analysis: the coefficient of determination

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called r-squared and is denoted as r^{2}

$$
r^{2}=\frac{S S R}{S S T}=\frac{\text { regression } \text { sum } \text { of squares }}{\text { total } \text { sum of squares }}
$$

$$
\text { note: } 0 \leq r^{2} \leq 1
$$

Simple Linear Regression Analysis: the coefficient of determination

How well the regressed values estimated the real/actual values

Simple Linear Regression Analysis: the coefficient of determination

	Coefficients	Standard Error	Stat	P-value	Lower 95\%	Upper 95\%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Simple Linear Regression Analysis: central assumptions

Assumptions of the model:

- Linearity
- The relationship between X and Y is linear
- Independence of Errors
- Error values are statistically independent
- Normality of Error
- Error values are normally distributed for any given value of X
- Equal Variance (also called homoscedasticity)
- The probability distribution of the errors has constant variance

Simple Linear Regression Analysis: central assumptions

$$
e_{i}=Y_{i}-\hat{Y}_{i}
$$

- The residual for observation $\mathrm{i}, \mathrm{e}_{\mathrm{i}}$, is the difference between its observed and predicted value
- Check the assumptions of regression by examining the residuals
- Examine for linearity assumption
- Evaluate independence assumption
- Evaluate normal distribution assumption
- Examine for constant variance for all levels of X (homoscedasticity)
- Graphical Analysis of Residuals
- Can plot residuals vs. X

Simple Linear Regression Analysis:

 central assumptionsAnalysis of residuals

Simple Linear Regression Analysis: central assumptions

Simple Linear Regression Analysis: central assumptions

Checking for normality:

- Examine the Histogram of the Residuals
- Construct a Normal Probability Plot of the Residuals

Simple Linear Regression Analysis: central assumptions

Checking for homoschedasticity

Simple Linear Regression Analysis: central assumptions

RESIDUAL OUTPUT		
	Predicted House Price	Residuals
1	251.92316	-6.923162
2	273.87671	38.12329
3	284.85348	-5.853484
4	304.06284	3.937162
5	218.99284	-19.99284
6	268.38832	-49.38832
7	356.20251	48.79749
8	367.17929	-43.17929
9	254.6674	64.33264
10	284.85348	-29.85348

Does not appear to violate any regression assumptions

Simple Linear Regression Analysis:

 standard error of the regression slope coefficient- The standard error of the regression slope coefficient $\left(b_{1}\right)$ is estimated by

$$
S_{b_{1}}=\frac{S_{Y X}}{\sqrt{S S X}}=\frac{S_{Y X}}{\sqrt{\sum\left(X_{i}-\bar{X}\right)^{2}}}
$$

where:

$$
\begin{aligned}
& S_{b_{1}}=\text { Estimate of the standard error of the slope } \\
& S_{Y X}=\sqrt{\frac{S S E}{n-2}}=\text { Standard error of the estimate }
\end{aligned}
$$

Simple Linear Regression Analysis: inference

- t test for a population slope
- Is there a linear relationship between X and Y ?
- Null and alternative hypotheses
- $\mathrm{H}_{0}: \beta_{1}=0 \quad$ (no linear relationship)
- $H_{1}: \beta_{1} \neq 0 \quad$ (linear relationship does exist)
- Test statistic

$$
\begin{aligned}
\mathrm{t}_{\text {STAT }} & =\frac{\mathrm{b}_{1}-\beta_{1}}{\mathrm{~S}_{\mathrm{b}_{1}}} \quad \begin{array}{l}
\text { where: } \\
\mathrm{b}_{1}=\begin{array}{l}
\text { regression slope } \\
\text { coefficient }
\end{array} \\
\beta_{1}=\text { hypothesized slope }
\end{array} \\
\text { d.f. } & =\mathrm{n}-2
\end{aligned} \quad \begin{aligned}
& \mathrm{S}_{\mathrm{b} 1}=\text { standard } \\
& \text { error of the slope }
\end{aligned}
$$

Simple Linear Regression Analysis:

 inferenceSoftware output:

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

Simple Linear Regression Analysis: inference

Test Statistic: $\mathbf{t}_{\text {STAT }}=\mathbf{3 . 3 2 9}$

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{1}=0 \\
& \mathrm{H}_{1}: \beta_{1} \neq 0
\end{aligned}
$$

Decision: Reject H_{0}
There is sufficient evidence that square footage affects house price

Simple Linear Regression:

a step-by-step Analysis

The Mini Market Company is a chain of small convenience retail shops that stocks a range of everyday items such as groceries, snack foods, confectionery, soft drinks ect.
The director is considering the possibility to open a new shop in Ferrara City Center; however before to construct the business plan, he wants understand the causal relationship of the shop size on sails volume.
For this reason the Director is asking you a technical advise.

> Data sample:
> 14 shops, Shop's size $\left(100 \mathrm{~m}^{2}\right)$ and Annual sales volume $\left(1^{\prime} 000 €\right)$

The database of sampled data

Shop's ID	Shop's size (100 $\left.\mathbf{M}^{\mathbf{2}}\right)$	Annual Sales Volume (1000 €)
1	1,7	3,7
2	1,6	3,9
3	2,8	6,7
4	5,6	9,5
5	1,3	3,4
6	2,2	5,6
7	1,3	3,7
8	1,1	2,7
9	3,2	5,5
10	1,5	2,9
11	5,2	10,7
12	4,6	7,6
13	5,8	11,8
14	3	4,1

Central question:
in the explorative phase, what we can say about the relationship between this two variables?

```
Step 1:
Graphical representation of the correlation between 2 variables
```

Relationship bewteen shop's size and annual sales volumes

The scatter-plot must form a linear pattern.

Step 2:

Estimating regression coefficients - b1 and bo

Step 2:

Estimating regression coefficients - b1 and bo

ID negozio	$\mathbf{M}^{\mathbf{2}(\mathbf{1 0 0}) \mathbf{X}}$	Sales Volume $\mathbf{(1 , 0 0 0)} \mathbf{y}$	$\mathbf{X}^{\mathbf{2}}$	$\mathbf{X}^{*} \mathbf{Y}$
1	1,7	3,7	2,89	6,29
2	1,6	3,9	2,56	6,24
3	2,8	6,7	7,84	18,76
4	5,6	9,5	31,36	53,2
5	1,3	3,4	1,69	4,42
6	2,2	5,6	4,84	12,32
7	1,3	3,7	1,69	4,81
8	1,1	2,7	1,21	2,97
9	3,2	5,5	10,24	17,6
10	1,5	2,9	2,25	4,35
11	5,2	10,7	27,04	55,64
12	4,6	7,6	21,16	34,96
13	5,8	11,8	33,64	68,44
14	3	4,1	9	12,3
14	40,9	81,8	157,41	302,3
n	n	$\sum_{i=1}^{n} y$	$\sum_{i=1}^{n} x x$	$\sum_{i=1}^{n} x y$

Step 2:
Estimating regression coefficients - b1 and bo

$\mathrm{b}_{1}=\mathrm{SSXY/SSX=} \begin{aligned} & \text { SSXY = 302.3-(40.9*81.8)/1 } \\ & \text { SSX = 157-(40.9*40.9)/14 } \end{aligned}$				
$=63.3271 / 37.9235=1.6699$	ID	$\begin{gathered} \hline \mathrm{M}^{2} \\ (100) \\ \mathrm{X} \\ \hline \end{gathered}$	€ annaul sales (1’000) y	Estimated Model
	1	1,7	3,7	3.8
	2	1,6	3,9	3.64
$\mathrm{bo}=(81.8 / 14)-1.6699(40.9 / 14)$	3	2,8	6,7	5.64
= 5.843-4.8785 =	4	5,6	9,5	10.31
$=0.9645$	5	1,3	3,4	3.13
	6	2,2	5,6	4.64
	7	1,3	3,7	3.13
	8	1,1	2,7	...
Estimated Model	9	3,2	5,5	...
	10	1,5	2,9	...
	11	5,2	10,7	...
$Y=0.9645+1.6699 \mathrm{Xi}$	12	4,6	7,6	...
	13	5,8	11,8	...
	14	3	4,1	5.97
	14	40,9	81,8	

```
Step 4:
Interpreting the estimated regression coefficients
```

\mathbf{b}_{1} - This is the SLOPE of the regression line.
Thus this is the amount that the Y variable (dependent) will change for each 1 unit change in the X variable.
So for each increase of $100 \mathrm{~m}^{2}$ in the Shop's Size (X), we estimate that the annual sales (Y) will increase by 1'996,6 Euros.
bo - This is the intercept of the regression line with the y-axis.
In other words it is the value of Y if the value of $X=0$.
Theoretically, in pour case when the shop's size $=0$, the annual sales will be $964,5 €$
Question: Does this interpretation make sense?

Attention to the X -values range!

If the X value is outside the range, we are not able to give a practical interpretation of bo

```
Step 5:
Making predictions using our estimated model
```

Before making predictions, check the data! Be sure that the range of sampled $X(X m i n, X m a x)$ includes the value you are using for your prediction

Considering our Mini Market case:
-How much will be the Annual Shops Sales if the Shop's Size is 200 squared meters?
\rightarrow Sales (1'000) $=0.9645+1.6699 * 200$
-How much will be the Annual Shops Sales if the Shop's Size is 100 squared meters?
\rightarrow We cannot do the prediction because the value $X=100$ is outside the range of sampled X (so the relationship between the two variables could be different)

```
Step 6:
Assessing the Model's goodness of fit
```

$\mathrm{R}^{2}=$ coefficient of determination.
It provides a measure of how well observed outcomes are replicated by the model, based on the proportion of total variation of outcomes explained by the model.

$$
R^{2}=\frac{\text { Regression Variability }}{\text { Total Variability }}
$$

This implies that $R 2 \%$ of the variability of the dependent variable has been accounted for, and the remaining (1-R2)\% of the variability is still unaccounted for.

Step 6:
Assessing the Model's goodness of fit

Graphical representation

Step 6:

Assessing the Model's goodness of fit

$\mathrm{R}^{2}=\mathrm{SSR} / \mathrm{SST}$
SSR $=\operatorname{SUM}(\hat{Y}-\bar{Y})^{2}$
SST<<SSR+SSE = SUM $(\mathrm{yi}-\overline{\mathrm{Y}})^{2}$

\boldsymbol{Y}	$\mathbf{X}-\overline{\mathbf{Y}}$	$\mathbf{(X - \overline { \mathbf { Y } }} \mathbf{2}^{\mathbf{2}}$ $\mathbf{S S R}$	$\mathbf{y i}^{\mathbf{-}-\overline{\mathbf{Y}}}$	$\mathbf{(\mathbf { y i } - \overline { \mathbf { Y } }) ^ { \mathbf { 2 } }} \mathbf{\text { SST }}$
3,8	$3,8-5,84=-2,04$	4,16	$-2,14$	4,58
3,64	$-2,2$	4,84	$-1,94$	3,76
5,64	$-0,2$	0,04	0,86	0,79
10,31	4,47	19,98	3,66	13,39
3,13	$-2,71$	7,34	$-2,44$	5,95
4,64	$-1,2$	1,44	$-0,24$	0,06
3,13	$-2,71$	7,34	$-2,14$	4,58
2,8	$-3,04$	9,24	$-3,14$	9,86
6,3	0,46	0,21	$-0,34$	0,11
3,47	$-2,37$	5,62	$-2,94$	8,64
9,65	3,81	14,52	4,86	23,62
8,65	2,81	7,89	1,76	3,1
10,65	4,81	23,13	5,96	35,52
5,97	0,13	0,01	$-1,74$	3,03

$R^{2}=105.72 / 116.99=0.903669=0.904 \rightarrow 90.4 \%$ of var accounted

Step 7:

Standard Error of the Estimates

$$
S_{y x}=\sqrt{\frac{S S E}{n-2}}=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}}
$$

In our example:
SSE= sum(Yi-Y) ${ }^{2}$
$\mathrm{n}=14 \rightarrow(\mathrm{n}-2=12)$
\rightarrow Syx $=0.966$

INTERPRETATION

Standard error=0.966, Thus equals to 966 Euros.
\rightarrow The mean deviation of the estimated sales value and the real one is equals to 966 Euros.

```
Step 8:
Graphical analysis of the assumptions
```

Using graphical representations, we need to check the 4 main assumptions of the Linear Regression Model

Linear Regression Mode using R

