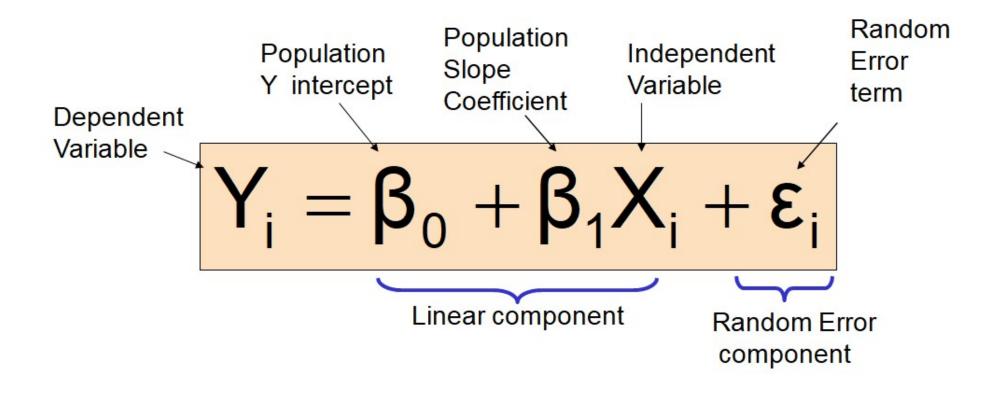


University of Ferrara

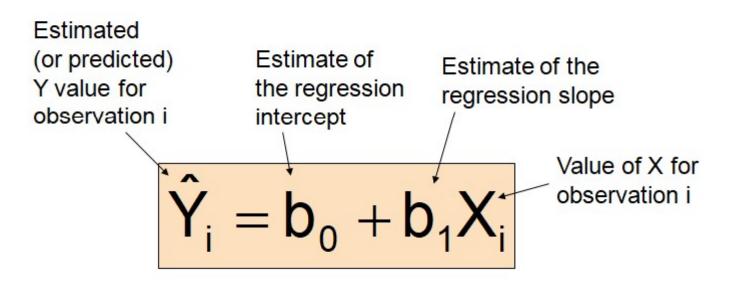
Stefano Bonnini & Valentina Mini

Simple Linear Regression Analysis: interpretation


Lecture 4 2019, Feb 20th

Contents

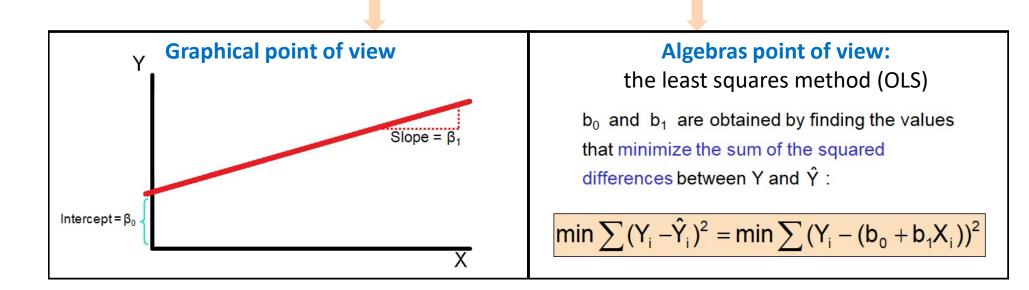
- 1) How to perform SLR by hand (the model)
- 2) How to interpret the results
- 3) How to
 - perform a Simple Linear Regression analysis using R (*please, see "cakes" dataset*) and
 - interpret the output


1 – How to perform SLR by hand

The simple linear regression model

The equation of estimated Y value

The simple linear regression equation provides an estimate of the population regression line



Starting from a database of observed variables (Yi and Xi) we aim to identify the equation:

 $\hat{\mathbf{Y}}_{i} = \mathbf{b}_{0} + \mathbf{b}_{1}\mathbf{X}_{i}$

To identify the actual equation we must find out the values of:

•b₀ (called intercept)•B₁ (the slope)

The values of our coefficients $\ddot{\mathbf{Y}}_{i} = \mathbf{b}_{0} + \mathbf{b}_{1}\mathbf{X}_{i}$

The least squares estimates of the intercept and slope in the simple linear regression model are

$$\mathbf{b}_0 = \overline{y} - \mathbf{b}_1 \overline{x}$$

$$\mathbf{b}_{1} = \frac{\sum_{i=1}^{n} y_{i} x_{i} - \frac{\left(\sum_{i=1}^{n} y_{i}\right) \left(\sum_{i=1}^{n} x_{i}\right)}{n}}{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}$$

where $\overline{y} = (1/n) \sum_{i=1}^{n} y_i$ and $\overline{x} = (1/n) \sum_{i=1}^{n} x_i$.

The meaning of the coefficients $\hat{Y}_i = b_0 + b_1 X_i$

- b₀ (β̂₀)is the estimated mean value of Y when the value of X is zero
- b₁ (β₁)is the estimated change in the mean value of Y as a result of a oneunit change in X

week	sold_cakes (units)	unit_price \$	
1	280	4	
2	290	4,2	1
3	300	5	1
4	300	5	
5	300	5,1	
6	310	5,2	
7	320	5,5	
8	330	5,7	1
9	340	5,7	1
10	350	5,8	1
11	350	5,8	
12	350	5,9	1
13	360	4	1
14	370	4,2	1
15	380	4,3	1
16	380	4,3	1
17	410	5	1
18	410	5	1
19	420	5,5	1
20	430	5,7	1
21	430	5,8	1
22	440	6	1
23	450	7	1
24	450	5	1
25	450	5,5	1
26	460	5,6	1
27	460	5,6	1
28	470	5,8	1
29	470	6	1
30	490	6]
31	500	7	1
32	500	7,5]
33	505	8	
34	510	8	

How to perform SLR 1) STARTING POINT: THE DATA

We have 34 observation (rows) and 2 variables (columns) collected in 34 weeks about:

- Units of cakes sold by week
 - = measurement in "units of cake sold"
- Price per cake (unit) applied in that week
 = measurement in "\$"

week	sold_cakes	unit_price	
week	(units)	\$	
1	280	4	2
2	290	4,2	2
3	300	5	
4	300	5	
5	300	5,1	
6	310	5,2	
7	320	5,5	
8	330	5,7	
9	340	5,7	
10	350	5,8	
11	350	5,8	
12	350	5,9	
13	360	4	
14	370	4,2	
15	380	4,3	
16	380	4,3	
17	410	5	
18	410	5	
19	420	5,5	
20	430	5,7	
21	430	5,8	
22	440	6	
23	450	7	
24	450	5	
25	450	5,5	
26	460	5,6	
27	460	5,6	
28	470	5,8	
29	470	6	
30	490	6	
31	500	7	
32	500	7,5	
33	505	8	
34	510	8	

1 - HOW TO PERFORM SLR BY HAND (THE MODEL)

2) SECOND STEP: IMMAGINE THE RELATIONSHIP OF DEPENDENCE

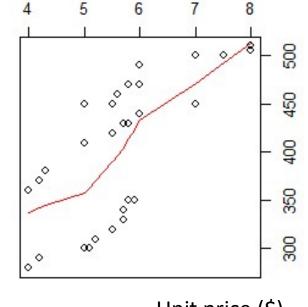
Which variable is the explanatory one? Which variable is the dependent variables?

Try to identify the model!

Y = b0 + b1 * x1

CENTRAL RESEARCH QUESTION: Is the number of cakes sold per week affected by the unit's price?

To investigate this question we define our model:

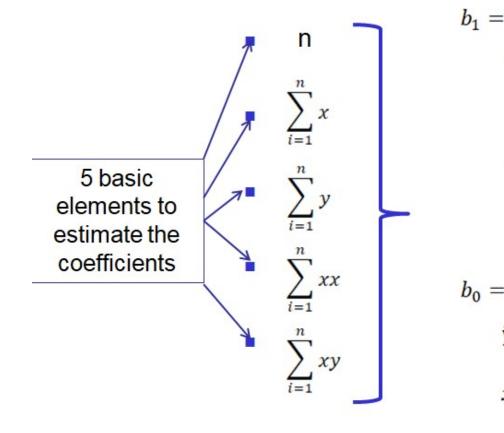

Units of sold cakes = b0 + b1 * price per unit

week	sold_cakes	unit_price
	(units)	\$ 4
1	280	
2	290	4,2
3	300	5
4	300	5
5	300	5,1
6	310	5,2
7	320	5,5
8	330	5,7
9	340	5,7
10	350	5,8
11	350	5,8
12	350	5,9
13	360	4
14	370	4,2
15	380	4,3
16	380	4,3
17	410	5
18	410	5
19	420	5,5
20	430	5,7
21	430	5,8
22	440	6
23	450	7
24	450	5
25	450	5,5
26	460	5,6
27	460	5,6
28	470	5,8
29	470	6
30	490	6
31	500	7
32	500	7,5
33	505	8
34	510	8

3) THIRD STEP: OBSERVE THE PLOT AND MAKE COMMENTS ABOUT THE POSSIBLE **RELATIONSHIP BETWEEN VARIABLES**

Sold cakes

4


Unit price (\$)

#comments: Do you think we can expect a linear causal relationship between Price and Sold_cakes?

4th STEP: CALCULATE THE COEFFICIENTS

 $\bar{x} = \frac{\sum_{i=i}^{n} x_i}{\sum_{i=i}^{n} x_i}$

n

$$ssxy/ssx$$

$$ssxy=\sum_{1=i}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{1=i}^{n} y_i x_i - \frac{(\sum_{1=i}^{n} x_i)(\sum_{1=i}^{n} y_i)}{n}$$

$$ssx=\sum_{1=i}^{n} (x_i - \bar{x})^2 = \sum_{1=i}^{n} x_i^2 - \frac{(\sum_{1=i}^{n} x_i)^2}{n}$$

$$= \bar{Y} - b_1 \bar{x}$$

$$\bar{Y} = \frac{\sum_{1=i}^{n} y_i}{n}$$

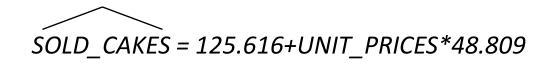
12

	sold_cakes	unit_price	1 – HOW TO PERFORM SLR BY HAND (THE MODEL)
week	(units)	\$	
1	280	4	4 th STEP: CALCULATE THE COEFFICIENTS
2	290	4,2	4 STEP. CALCOLATE THE COEFFICIENTS
3	300	5	we need to calculate the following elements:
4	300	5	we need to calculate the following elements.
5	300	5,1	n= 34 = total number of observations (rows)
6	310	5,2	
7	320	5,5	
8	330	5,7	n
9	340	5,7	\sum_{x} = total sum of unit_price (4+4.2+5+5+5.1++8+8) =
10	350	5,8	
11	350	5,8	<i>i</i> =1 189.7 \$
12	350	5,9	Average x = 189.7/34 = 5.58 \$
13	360	4	Average X – 109.7/34 – 5.30 Ş
14	370	4,2	
15	380	4,3	
16	380	4,3	n = total sum of sold cakes
17	410	5	
18	410	5	$\sum_{i=1}^{n} y = \text{total sum of sold}_{\text{cakes}}$ (280+290+300+300+505+510)=13565 cakes
19	420	5,5	
20	430	5,7	Average y = 13565/34 = 398.97 cakes
21	430	5,8	
22	440	6	22
23	450	7	
24	450	5	$\sum xx = 4*4+4.2*4.2+5*5++8*8+8*8=1092.87$
25	450	5,5	i=1
26	460	5,6	6-1 -
27	460	5,6	
28	470	5,8	n
29	470	6	$\sum xy = 4*280+4.2*290++8*505+8*210=77324$
30	490	6	$y = 4^{\circ} 260 + 4.2^{\circ} 290 + + 8^{\circ} 505 + 8^{\circ} 210 = 77324$
31	500	7	i=1
32	500	7,5	13
33	505	8	15
34	510	8	

4th STEP: CALCULATE THE COEFFICIENTS

$$b_{1} = ssxy/ssx = \frac{\sum_{i=i}^{n} y_{i}x_{i} - \frac{(\sum_{i=i}^{n} x_{i})(\sum_{i=i}^{n} y_{i})}{n}}{\sum_{i=i}^{n} x_{i}^{2} - \frac{(\sum_{i=i}^{n} x_{i})^{2}}{n}} = \frac{77324 - (189.7^{*}13565)/34}{1092 - (189.7^{2})/34} = 48.809$$

$$b_0 = \bar{Y} - b_1 \bar{x}$$
 = 398.97 - (48.809*5.58) = 125.616


week	sold_cakes	unit_price	
WEEK	(units)	\$	
1	280	4	
2	290	4,2	
3	300	5	
4	300	5	
5	300	5,1	
6	310	5,2	
7	320	5,5	
8	330	5,7	
9	340	5,7	
10	350	5,8	
11	350	5,8	
12	350	5,9	
13	360	4	
14	370	4,2	
15	380	4,3	
16	380	4,3	
17	410	5 5	
18	410	5	
19	420	5,5	
20	430	5,7	
21	430	5,8	
22	440	6	
23	450	7	
24	450	5	
25	450	5,5	
26	460	5,6	
27	460	5,6	
28	470	5,8	
29	470	6	
30	490	6	
31	500	7	
32	500	7,5	
33	505	8	
24	F10	0	1

510

8

34

5th STEP: TRANSCRIPT THE MODEL

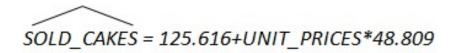
NOW WE CAN INDIVIDUATE THE ESTIMATED Y VALUES:

WEEK1:

-Estimated Y value: 125.616+4*48.809 = 320.852 sold_cakes -Real (observed) Y value : 280

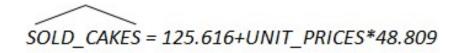
The difference between 280 and 320.852 is the error made by our model.

#exercise: please calculate the estimated Y value for the 2nd week.


2 -How to interpret the results

6th step: interpreting the result

- b1 = when the price of one cake increases by 1\$, we expect that the number of sold_cakes increases by 48.809 units
- b₀ = when the price of one cake is 0\$ → for that week the estimated sold_cakes will be 125.616

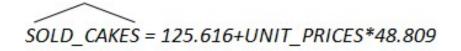

be careful about the real meaning of your interpretation!!! NB: the problem of the X₁ (unit' price) range

7th step: making predictions

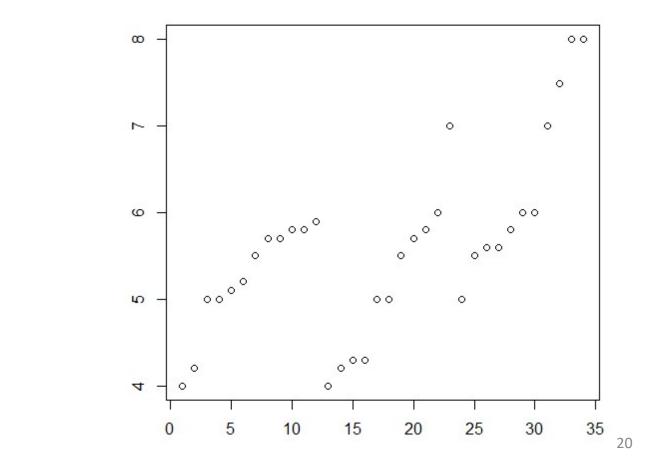
- 1) Control the X range In our case X(4\$; 8\$)
- 1) Make the prediction for values within the range
- I.e. : How many cakes we expect to sell in a week in which the applied price is 5.3\$ per cake?

 \rightarrow 125.616+5.3*48.809 = 384.304 cakes \rightarrow 384 cakes c.a.

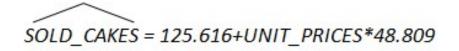
8th step: assessing the goodness of fit using the coefficient of determination


It provides a measure of how well observed outcomes are replicated by the model R²= SSR/SST

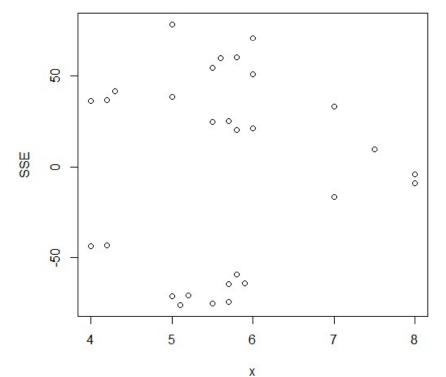
SSR = SUM $(\hat{\mathbf{Y}} - \bar{\mathbf{Y}})^2$

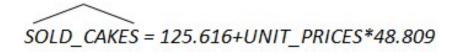

 $SST < SSR + SSE = SUM(yi-\bar{Y})^2$

In our case: $R^2 = 0.4588 \rightarrow$ using our model the 45.88% of total variance is explained


The unexplained variance (1-0.4588) may be due to additional variables or different relationship between the observed variables.

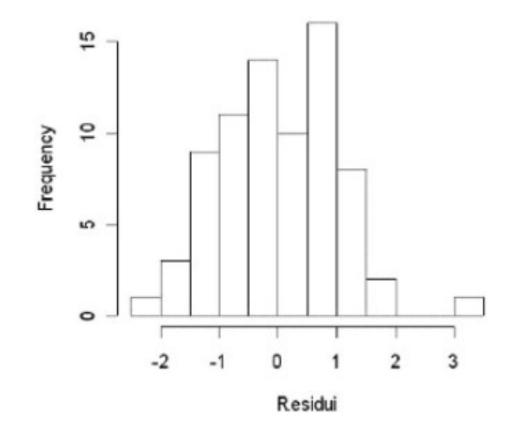
9th step: interpreting the residuals of our model (to confirm the 4 basic assumptions)


•Examine for linearity



9th step: interpreting the residuals of our model (to confirm the 4 basic assumptions)

•Evaluate independence assumption


•Examine for constant variance for all levels of X (homoscedasticity)

9th step: interpreting the residuals of our model (to confirm the 4 basic assumptions)

•Evaluate normal distribution of residuals (histogram of the residuals)

4 - How to perform LRM using R

Simple Linear Regression Model using R

UNIFE

Spring Semester

Mini V. 20-02-2019

RESEARCH QUESTION:

does exist a linear causal relationship between the number of cakes sold in a week (by a firm) and the unit's price (the price applied per cake)?

Let's observe a given dataset and perform a simple linear regression analysis

#Analysis: step by step

- **0. LET'S PREPARE THE DATASET**
- 1. Visualize the relationship: the scatter plot
- 2. Identify the estimated model
- 3. The model on a graph
- 4. Prediction: the expected Y values given a X value
- 5. The model's goodness of fit
- 6. Graphical analysis of Linear Regression Model's assumptions
- 7. what about the inference?#