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Multiple Linear Regression Analysis



The state of the art

• Last 2 weeks we talked about simple linear regression, that 
is finding a best line through a bunch of data, and that’s 
good for models where you have an output (or dependent , 
Y) variable depending on one input (or explanatory , x) 
variable. 

• But the world is a very complex place, so we may have 
more explanatory variables affecting a dependent variable. more explanatory variables affecting a dependent variable. 

• What do you do if you have got a Y that depends on two or 
more explanatory (x) variables?

How can we model that?
How can we use linear algebra to find the best fit?
How we can interpret the obtained results?
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Examples of multiple linear regression problems: 

EX 1 - REGIONAL DELIVERY SERVICES

1. introduction



Examples of multiple linear regression problems: 

EX 2 - CAKES TRADING COMPANY

1. introduction



Example 1: 
definition of data and data variables

First trip: we travel 89 miles; 

1. introduction

First trip: we travel 89 miles; 
we had 4 deliveries on that trip  and the 
total time was 7 hours. 

Note:      Y = dependent variable;   Xi = independent variables OR
Y= response variable;   Xi = predictor variables  OR
Y= output variable;   Xi = input variables. 



Multiple regression 
is an extension of 

simple linear regression

1. introduction

Having more independent variables complicates things a bit…
Thus we need to make new considerations: 



New considerations (1/2)
1. introduction



New considerations (2/2)
1. introduction

Running the Multiple Regression is the very last step



Multiple regression analysis: 
many relationship to deal with 

1. introduction
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We don’t have just 2 relationship (independents – dependent)

We may discover also the relationship between the independents: we need to check for that to 
avoid the multicollinearity  we need to guarantee that they are independent to each other

Po
te

nt
ia

l m
ul

tic
ol

lin
ea

rit
y



Multiple regression analysis: 
many relationship to deal with 

1. introduction

• As each independent variable is added, the relationships may become very 
numerous. 

• The ART of doing multiple regression is deciding which independent variables 
make the cut and which do not. 

• Some independents variables, or set of independent variables, are better at 
predicting the dependent variable than other. 

• Some contributes nothing. 



Multiple regression analysis: 
many relationship to deal with 

The ideal is for all the 
INDEPENDENT VARIABLES to be correlated 

with the dependent variable, 

1. introduction

with the dependent variable, 
but NOT WITH EACH OTHER



The model The model 



Idea: Examine the linear relationship between 
1 dependent (Y) & 2 or more independent (or explanatory) variables (Xi)

Multiple Regression Model with k Independent Variables:

Population 

2. The model

iikki22i110i εXβXβXββY 

Population 
Y-intercept Population slopes Random Error
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The coefficients of the multiple regression model 

are estimated using sample data

Estimated 

Multiple regression equation with k independent variables:

2. The model

kik2i21i10i
XbXbXbbY ˆ

Estimated 
(or predicted) 
value of Y

Estimated slope coefficientsEstimated
intercept
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2. The model



Example using numbers

2. The model



Interpreting coefficients in MLRM

2. The model

A numerical example 

Or: for each increase of 1 unit ($1000) in capital investment, we expect an increase of $9’000 in sales, 
when marketing expenditures are held constant.  



Using linear algebra to find the best fitUsing linear algebra to find the best fit



3. Using linear algebra to find the best fit

To deal with a high number of variables and thus a high number of 
operations, computer tends to perform much easily using matrixes 



3. Using linear algebra to find the best fit

Using matrixes: 



3. Using linear algebra to find the best fit

Using matrixes: 



Now, using this matrix form, how we can 
compute the coefficients?

3. Using linear algebra to find the best fit

We use exactly the same principle we used for LRM: 
minimizing the least square, 

but for this time using matrixes



3. Using linear algebra to find the best fit



3. Using linear algebra to find the best fit

The aim of the Least 
Square method is to 

find out the Beta 
values that minimize 

this RSS (Error)



3. Using linear algebra to find the best fit



Matrix Approach

We wish to find the vector of least squares 
estimators that minimizes:

The resulting least squares estimate is

3. Using linear algebra to find the best fit

The resulting least squares estimate is
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• The least squares function is given by

• The least squares estimates must satisfy

3. Using linear algebra to find the best fit
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• The least squares normal Equations are

3. Using linear algebra to find the best fit

• The solution to the normal Equations are the least 
squares estimators of the regression coefficients.
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Graphical representationGraphical representation



Two variable model

Y

22110 XbXbbŶ 

4. Graphical representation  

X1

X2
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A case study guides our first interpretationA case study guides our first interpretation



• A distributor of frozen dessert pies wants to 
evaluate factors thought to influence 
demand

– Dependent variable:       Pie sales (units per week)

5. A case study guides our first interpretation  

Dependent variable:       Pie sales (units per week)

– Independent variables:   Price (in $)
Advertising ($100’s)

• Data are collected for 15 weeks
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Sales = b0 + b1 (Price) 
+ b2 (Advertising)

Week
Pie 

Sales
Price

($)
Advertising

($100s)

1 350 5.50 3.3

2 460 7.50 3.3

3 350 8.00 3.0

4 430 8.00 4.5

5 350 6.80 3.0

Multiple regression equation:

5. A case study guides our first interpretation  

+ b2 (Advertising)
5 350 6.80 3.0

6 380 7.50 4.0

7 430 4.50 3.0

8 470 6.40 3.7

9 450 7.00 3.5

10 490 5.00 4.0

11 340 7.20 3.5

12 300 7.90 3.2

13 440 5.90 4.0

14 450 5.00 3.5

15 300 7.00 2.734



Regression Statistics

Multiple R 0.72213

R Square 0.52148

Adjusted R Square 0.44172

Standard Error 47.46341

Observations 15 ertising)74.131(Adv  ce)24.975(Pri - 306.526 Sales 

b1 = -24.975: sales will decrease, 
on average, by 24.975 pies per 
week for each $1 increase in 
selling price, net of the effects of 
changes due to advertising

b2 = 74.131: sales will increase, 
on average, by 74.131 pies per 
week for each $100 increase in 
advertising, net of the effects of 
changes due to price

5. A case study guides our first interpretation  

ANOVA df SS MS F Significance F

Regression 2 29460.027 14730.013 6.53861 0.01201

Residual 12 27033.306 2252.776

Total 14 56493.333

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 555.46404

Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37392

Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 130.70888
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Predict sales for a week in which the selling price is 
$5.50 and advertising is $350:

ertising)74.131(Adv  ce)24.975(Pri - 306.526 Sales 

5. A case study guides our first interpretation  

Predicted sales is 
428.62 pies

428.62 

(3.5) 74.131  (5.50) 24.975 - 306.526 

ertising)74.131(Adv  ce)24.975(Pri - 306.526 Sales







Note that Advertising is in 
$100’s, so $350 means that 
X2 = 3.5
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• Reports the proportion of total variation in Y 
explained by all X variables taken together

squares of sum regressionSSR

5. A case study guides our first interpretation  

squares of sum total

squares of sum regression

SST

SSR
r 2
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Regression Statistics

Multiple R 0.72213

R Square 0.52148

Adjusted R Square 0.44172

Standard Error 47.46341

Observations 15

.52148
56493.3

29460.0

SST

SSR
r2 

52.1% of the variation in pie sales is 
explained by the variation in price and 
advertising

5. A case study guides our first interpretation  

ANOVA df SS MS F Significance F

Regression 2 29460.027 14730.013 6.53861 0.01201

Residual 12 27033.306 2252.776

Total 14 56493.333

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 555.46404

Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37392

Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 130.70888

advertising
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• Shows the proportion of variation in Y explained by all X 
variables adjusted for the number of X variables used 
and sample size

(continued)











 


1

)1(1 22 n
rr

5. A case study guides our first interpretation  

(where n = sample size, k = number of independent variables)

– Penalize excessive use of unimportant independent 
variables

– Smaller than r2

– Useful in comparing among models





















1

1
)1(1 22

kn

n
rradj

39



• F Test for Overall Significance of the Model

• Shows if there is a linear relationship between all 
of the  X  variables considered together and  Y

• Use F-test statistic

5. A case study guides our first interpretation  

• Use F-test statistic

• Hypotheses:
H0: β1 = β2 = … = βk = 0  (no linear relationship)

H1: at least one  βi ≠ 0   (at least one independent
variable affects Y)
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• Test statistic:


SSE
k

SSR

MSE

MSR
FSTAT

5. A case study guides our first interpretation  

where FSTAT has numerator d.f. = k and
denominator d.f. = (n – k - 1)

1 kn

SSEMSESTAT
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Regression Statistics

Multiple R 0.72213

R Square 0.52148

Adjusted R Square 0.44172

Standard Error 47.46341

Observations 15

(continued)

With 2 and 12 degrees of 
freedom

P-value for 
the F Test

6.5386
2252.8

14730.0

MSE

MSR
FSTAT 

5. A case study guides our first interpretation  

ANOVA df SS MS F Significance F

Regression 2 29460.027 14730.013 6.53861 0.01201

Residual 12 27033.306 2252.776

Total 14 56493.333

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 555.46404

Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37392

Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 130.70888

freedom the F Test
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Assumptions:

ei = (Yi – Yi)

<

Errors (residuals) from the regression model:

5. A case study guides our first interpretation  

Assumptions:
• Independence of errors

– Error values are statistically independent

• Normality of errors
– Error values are normally distributed for any given set of X values

• Equal Variance (also called Homoscedasticity)
– The probability distribution of the errors has constant variance
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• These residual plots are used in multiple 
regression:
– Residuals vs. Yi

– Residuals vs. X

<

5. A case study guides our first interpretation  

– Residuals vs. X1i

– Residuals vs. X2i

– Residuals vs. time (if time series data)

Use the residual plots to check for violations of 
regression assumptions
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• Use t tests of individual variable slopes

• Shows if there is a linear relationship between 
the variable Xj and Y holding constant the 
effects of other X variables

5. A case study guides our first interpretation  

effects of other X variables

• Hypotheses:
– H0: βj = 0 (no linear relationship)

– H1: βj ≠ 0  (linear relationship does exist
between Xj and Y)
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H0: βj = 0 (no linear relationship)

H1: βj ≠ 0  (linear relationship does exist
between Xj and Y)

(continued)

5. A case study guides our first interpretation  

Test Statistic:

(df = n – k – 1)

jb

j
STAT S

b
t

0
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Regression Statistics

Multiple R 0.72213

R Square 0.52148

Adjusted R Square 0.44172

Standard Error 47.46341

Observations 15

t Stat for Price is  tSTAT = -2.306, with p-
value .0398

t Stat for Advertising is tSTAT = 2.855, with 
p-value .0145

(continued)

5. A case study guides our first interpretation  

ANOVA df SS MS F Significance F

Regression 2 29460.027 14730.013 6.53861 0.01201

Residual 12 27033.306 2252.776

Total 14 56493.333

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 555.46404

Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37392

Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 130.70888
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Multicollinearity (also collinearity) occurs when two or more 
explanatory variables of the multiple regression model are highly 
correlated

In the presence of multicollinearity the coefficients estimates 
can change with high variability as a consequence of small 

5. A case study guides our first interpretation  

can change with high variability as a consequence of small 
changes in the data (low efficiency).  

Perfect multicollinearity  X matrix is singular and cannot be 
inverted  least square estimates cannot be computed 
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One way to detect multicollinearity is by computing the variance inflaction factors

Rj
2: coefficient of determination of the regression of Xj on all the other explanatory 

variables

5. A case study guides our first interpretation  

A VIF greater than or equal to 5 indicates 
a multicollinearity problem

In the presence of multicollinearity one or more explanatory variables 
should be removed by the model

Example: VIF(Price)=VIF(Advertising)= 1/(1-R1
2)= 1/(1-0.00092642)  1

Price and Advertising are almost uncorrelated  absence of collinearity
49



Regression analysis general procedure

• Specification of the multiple regression 
model

• Test the significance of the multiple 
regression model

5. A case study guides our first interpretation  

regression model
• Test the significance of the regression 

coefficents
• Discuss adjusted r2

• Use residual plots to check model 
assumptions 
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Exercises using RExercises using R



In class exercise

Open R
Using the dataset “torta”, perform a MLRM 

Central question: 
Are the total sales affected by price and Are the total sales affected by price and 
advertising? 

Note: 
Price is expressed in $
Advertise is expressed in 100$



Problem 1 - Passito

• Perform a multiple regression analysis for 
predicting LIKE_PAS as function of 
LIKE_AROMA, LIKE_SWEET, LIKE_ALCOHOL 
and LIKE_TASTE

R exercises

LIKE_AROMA, LIKE_SWEET, LIKE_ALCOHOL 
and LIKE_TASTE

• Predict the value of LIKE_PAS when
LIKE_AROMA=LIKE_ALCOHOL=5
LIKE_TASTE=LIKE_SWEET=6
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Problem 2 - Hotel

• Perform a multiple regression analysis for 
predicting Price as function of Cleanliness and 
Courtesy

R exercises

Courtesy
• Predict the value of Price when 

Cleanliness=80 and Courtesy=40
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Problem 3 - Mall

• Perform a multiple regression analysis for 
predicting Product_assortment as function of 
Temp_Level, Brightness, Salesman and 
Music_volume

R exercises

Temp_Level, Brightness, Salesman and 
Music_volume

• Predict the value of Product_assortment
when Temp_Level=-50, Brightness=20, 
Salesman=30 and Music_volume=-70
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Problem 4 - Students

• Perform a multiple regression analysis for 
predicting Econometrics as function of 
Statistics and Mathematics

R exercises

Statistics and Mathematics
• Predict the value of Econometrics when 

Statistics=8 and Mathematics=7
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