## Un condensatore carico

Le armature di un condensatore di capacità $C$ sono portate ad una differenza di potenziale $V_{o}$. A questo punto attraverso una resistenza $R$ una armatura viene connessa alla armatura di un condensatore scarico di capacità $4 C$. Le altre due armature erano in contatto sin dall'inizio. Determinare:
a) L'energia elettrostatica dissipata nella resistenza in tale processo.

b) La costante di tempo del processo di scarica/carica (a seconda di quale condensatore si considera).
(dati del problema $V_{0}=200 V, R=1 M \Omega, C=1 \mu F$ )

## Solutions

a)

Sulle armature del I condensatore vi è una carica iniziale:
$Q_{0}=C V_{o}=200 \mu C$
Con una energia iniziale pari a:
$E_{0}=\frac{1}{2} C V_{o}^{2}=20 m J$
Alla fine del processo tale carica si deve conservare, quindi le cariche finali valgono:

$$
Q_{1 f}+Q_{2 f}=Q_{0}
$$

Inoltre le differenze di potenziale ai capi dei due condensatori debbono equivalersi:

$$
\frac{Q_{1 f}}{C}=\frac{Q_{2 f}}{4 C}
$$

## Cioè:

$$
\begin{aligned}
& Q_{1 f}=\frac{Q_{o}}{5}=40 \mu C \\
& Q_{2 f}=\frac{4}{5} Q_{o}=160 \mu C
\end{aligned}
$$

Per cui:

$$
E_{f}=\frac{1}{2} \frac{Q_{1 f}^{2}}{C}+\frac{1}{2} \frac{Q_{2 f}^{2}}{4 C}=\frac{1}{5} \frac{1}{2} \frac{Q_{0}^{2}}{C}
$$

Quindi l'energia dissipata vale:

$$
\Delta E=E_{0}-E_{f}=16 m J
$$

## b)

L'equazione della maglia:

$$
\frac{Q_{1}}{C}+R I-\frac{Q_{2}}{4 C}=0
$$

Con in ogni istante:

$$
Q_{1}+Q_{2}=Q_{0}
$$

Quindi:

$$
\begin{aligned}
& \frac{Q_{1}}{C}+R I-\frac{Q_{0}-Q_{1}}{4 C}=0 \\
& Q_{1}+\frac{4}{5} R C \frac{d Q_{1}}{d t}-\frac{Q_{0}}{5}=0
\end{aligned}
$$

Quindi la costante di tempo vale:

$$
\tau=\frac{4}{5} R C=0.8 s
$$

e separando le variabili:

$$
\frac{d Q_{1}}{Q_{1}-Q_{0} / 5}=-\frac{d t}{\tau}
$$

$$
\ln \frac{Q_{1}-Q_{0} / 5}{Q_{0}-Q_{0} / 5}=-\frac{t}{\tau}
$$

$$
Q_{1}=\frac{Q_{0}}{5}+\frac{4 Q_{0}}{5} e^{-t / \tau}
$$

'E facile vedere come per $t=0 \mathrm{e} t=\infty$ assume i valori dati nel punto a).

