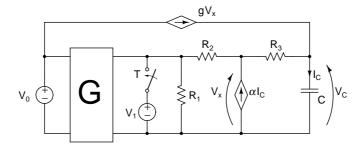
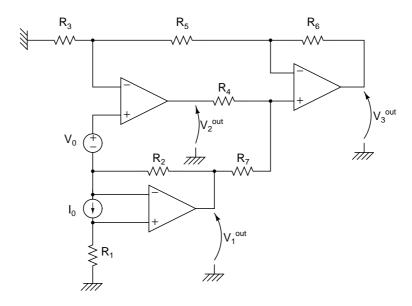

Esame di Teoria dei Circuiti - 13 giugno 2008


Esercizio 1

Con riferimento al circuito di figura si assumano i seguenti valori: $R_1=1~\mathrm{k}\Omega,~R_2=7~\mathrm{k}\Omega,~R_3=2~\mathrm{k}\Omega,~R_4=1~\mathrm{k}\Omega,~R_5=3.7~\mathrm{k}\Omega,~R_6=1~\mathrm{k}\Omega,~R_7=2~\mathrm{k}\Omega,~r=2~\mathrm{k}\Omega,~\alpha=2,~V_0=5~\mathrm{V}.$ Calcolare:

- la matrice delle resistenze del due-porte
- la potenza dissipata sulla resistenza R_7 quando alla porta 1 viene collegato il generatore ideale di tensione V_0 e alla porta 2 vengono collegate le due resistenze R_6 , R_7 come indicato in figura.

Esercizio 2


Con riferimento al circuito di figura si assumano i seguenti valori:

$$R_1 = 2 \text{ k}\Omega, R_2 = R_3 = 1 \text{ k}\Omega, g = 2 \text{ m}\Omega^{-1}, G = \begin{bmatrix} 1 & -3 \\ -3 & 2 \end{bmatrix} \text{ m}\Omega^{-1}, \alpha = 2,$$

 $C = 2.5 \ \mu\text{F}, V_0 = 3 \text{ V}, V_1 = -1 \text{ V}.$

Per $t < t_0 = 0$ sec l'interruttore T è aperto e il circuito è a regime. All'istante $t = t_0$ l'interruttore si chiude. Determinare l'andamento della tensione $V_C(t)$.

Suggerimento: Per $t > t_0$ si consiglia di calcolare l'equivalente di Thevenin del circuito connesso alla capacità inserendo un generatore di corrente e calcolandone la tensione ai suoi capi.

Esercizio 3

Con riferimento al circuito di figura si assumano i seguenti valori: $R_1=2$ k Ω , $R_2=3$ k Ω , $R_3=4$ k Ω , $R_4=1$ k Ω , $R_5=R_6=R_7=3$ k Ω , $V_0=3$ V, $I_0=1$ mA. Si supponga inoltre che gli amplificatori operazionali siano ideali e che lavorino sempre nella zona ad alto guadagno. Calcolare le tensioni V_1^{out} , V_2^{out} e V_3^{out} .