
<u>Teoria dei Circuiti – Esercitazione</u> 11 Dicembre 2014

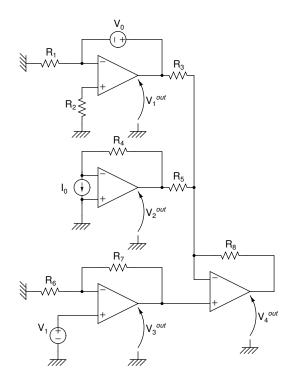
Esercizio 1

Con riferimento al circuito di figura si assumano i seguenti valori: $R_1=3/8\,\mathrm{k}\Omega,\ R_2=5/8\,\mathrm{k}\Omega,\ R_3=3/8\,\mathrm{k}\Omega,\ R_4=1\,\mathrm{k}\Omega,\ r=1/8\,\mathrm{k}\Omega,\ \alpha=1/3,\ \beta=3,\ V_3=12\,\mathrm{V}.$

Calcolare:

- la descrizione del doppio bipolo evidenziato in figura tramite matrice delle conduttanze *G*;
- il circuito equivalente di Thevenin alla porta 2 del doppio bipolo \underline{G} calcolato sopra, quando alla porta 1 vengono collegati il generatore di tensione comandato βV_{R4} , il generatore di tensione ideale V_3 e la resistenza R_4 , come indicato in figura.

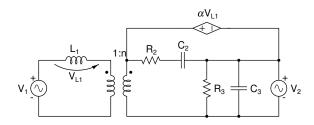
Esercizio 2



Con riferimento al circuito di figura si assumano i seguenti valori:

$$\underline{R} = \begin{pmatrix} 5 & 1 \\ 1 & 5 \end{pmatrix} k\Omega, R_3 = R_4 = 1 k\Omega, C = 500 \text{ nF}, \alpha = 4, I_0 = 5 \text{ mA}.$$
Per $t < t_0 = 0 \text{ s}$ l'interruttore T_1 è chiuso ed il circuito è a regime.

Per $t < t_0 = 0$ s l'interruttore T_1 è chiuso ed il circuito è a regime. All'istante $t = t_0$ l'interruttore T_1 si apre. Determinare l'andamento della tensione $V_C(t)$ ai capi del condensatore.


Esercizio 3

Con riferimento al circuito di figura si assumano i seguenti valori: $R_1=R_2=\ldots=R_8=2\,\mathrm{k}\Omega,\,V_0=5\,\mathrm{V},\,V_1=2,5\,\mathrm{V},\,I_0=2,5\,\mathrm{mA}.$

Si supponga inoltre che gli amplificatori operazionali siano ideali e che lavorino sempre nella zona ad alto guadagno. Determinare le tensioni V_1^{out} , V_2^{out} , V_3^{out} e V_4^{out} di uscita degli amplificatori operazionali.

Esercizio 4

Con riferimento al circuito di figura si assumano i seguenti valori: $L_1=10\,\mathrm{mH},\ R_2=R_3=20\,\mathrm{k}\Omega,\ C_2=C_3=500\,\mathrm{pF},\ n=5,\ \alpha=4,\ V_1(t)=1\cos\left(\omega t-\pi\right)\,\mathrm{V},\ V_2(t)=5\cos\left(\omega t+\pi/2\right)\,\mathrm{V},\ \omega=100\,\mathrm{krad/s}.$

Determinare la potenza complessa erogata dal generatore ideale di tensione V_1 e V_1 .