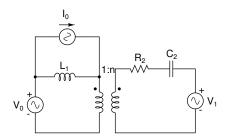
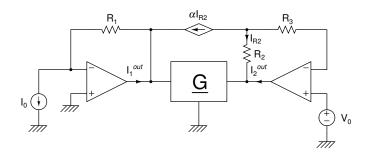

<u>Teoria dei Circuiti – Esercitazione</u> 12 Dicembre 2013


Esercizio 1

Con riferimento al circuito di figura si assumano i seguenti valori: $R_1=2\,\mathrm{k}\Omega,\ R_2=6\,\mathrm{k}\Omega,\ R_3=1\,\mathrm{k}\Omega,\ R_4=3\,\mathrm{k}\Omega,\ R=6\,\mathrm{k}\Omega,\ \alpha=3,\ V_0=12\,\mathrm{V}.$ Calcolare:

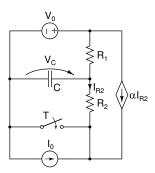
- la descrizione del doppio bipolo evidenziato in figura tramite matrice delle resistenze <u>R</u>;
- per quale valore di I_0 la potenza $P_{\underline{R}}$ dissipata dal doppio bipolo calcolato in precedenza, quando alla porta 1 viene collegato il generatore ideale di tensione V_0 , e alla porta 2 la resstenza R_4 ed il generatore ideale di corrente I_0 , e nulla.


Esercizio 2

Con riferimento al circuito di figura si assumano i seguenti valori: $L_1 = 100 \text{ mH}, R_2 = 1 \text{ k}\Omega, C_2 = 10 \,\mu\text{F}, n = 10, V_0(t) = 2 \cos{(\omega t)} \text{ V}, V_1(t) = 10\sqrt{2}\cos{(\omega t + \pi/4)} \text{ V}, I_0(t) = 200\cos{(\omega t + \pi/2)} \text{ mA}, \omega = 100 \,\text{rad/s}.$

Determinare la potenza complessa erogata dai due generatori ideali di tensione V_0 e V_1 .

Esercizio 3



Con riferimento al circuito di figura si assumano i seguenti valori:

$$R_1 = R_2 = R_3 = 2.5 \,\mathrm{k\Omega}, \ \underline{G} = \begin{pmatrix} 3/5 \,\mathrm{m} & -1/5 \,\mathrm{m} \\ -1/5 \,\mathrm{m} & 3/5 \,\mathrm{m} \end{pmatrix} \Omega^{-1}, \ \alpha = 5, \ V_0 = 5 \,\mathrm{V}, \ I_0 = 2 \,\mathrm{mA}.$$

Si supponga inoltre che gli amplificatori operazionali siano ideali e che lavorino sempre nella zona ad alto guadagno. Determinare le correnti I_1^{out} e I_2^{out} di uscita degli amplificatori operazionali.

Esercizio 4

Con riferimento al circuito di figura si assumano i seguenti valori: $R_1=R_2=2\,\mathrm{k}\Omega,\,C=1\,\mu\mathrm{F},\,\alpha=2,\,V_0=6\,\mathrm{V},\,I_0=9\,\mathrm{mA}.$

Per $t < t_0 = 0$ s l'interruttore T è aperto ed il circuito è a regime. All'istante $t = t_0$ l'interruttore T si chiude. Determinare l'andamento della tensione $V_C(t)$ ai capi del condensatore.