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Uncertainty

● Reasoning requires simplifications:
– Birds fly

– Smoke suggests fire

● Treatment of exceptions
● How to reason from uncertain knowledge?



4

How to Perform Inference?

● Use non-numerical techniques
– Logicist: non monotonic logic

● Assign to each proposition a numerical measure of 
uncertainty 
– Neo-probabilist: use probability theory

– Neo-calculist: use other theories: 
● fuzzy logic
● certainty factors
● Dempster-Shafer
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Probability Theory

● A: Proposition,
– Ex: A=The coin will land heads 

● P(A): probability of A
● Frequentist approach: probability as relative 

frequency
– Repeated random experiments (possible worlds)

– P(A) is the fraction of experiments in which A is true

● Bayesian approach: probability as a degree of belief
● Example: B=burglary tonight
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Frequentist Approach

● A=The coin will land heads 
● 100 throws, for each throw we record whether A is 

true
● Results:

A
61 39 100

¬A

P A=
61

100
=0.61=61% P ¬A=

39
100

=0.39=39%
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Frequentist Approach

● H=”having a headache”
● 400 patients

H ¬H
40 360 400

P A=
40

400
=0.1=10 %
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Frequentist Approach

● F=”having the flu”
● 400 patients

F ¬F
10 390 400

P A=
10
400

=0.025=2.5%
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Visualizing the Frequentist Approach

● P(A)

All the experiments
(worlds)
Area=1

Experiments where A is true
Area of the green rectangle=P(A)
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Axioms of Probability Theory

0≤P A≤1

P Sure Proposition=1

P A∨B=P AP B
if Aand B are mutually exclusive
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Visualizing the Axioms

● 0<=P(A)<=1: the area cannot get smaller than 0 and 
larger than 1

All the experiments
(worlds)
Area=1
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Visualizing the Axioms

● P(A v B)=P(A)+P(B) if they are mutually exclusive
● Mutually exclusive=> no world in common=> non 

overlapping=> the area is the sum

All the experiments
(worlds)
Area=1

A

B
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Joint Probability

● Consider the events
– H=”having a headache”

– F=”having the flu”

● Joint event: HF=”having a headache and the flu”
● Also written as H,F

● Joint probability: P(HF)=P(H,F)
● Frequentist interpretation:

– P(HF)=P(H,F) is the fraction of experiments (in this 
case patients) where both H and F holds
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Joint Probability

● Example: 400 patients

H
F 5 5 10

35 355 390
40 360 400

¬H

¬F

P H , F =
5

400
=0.0125=1.25% P H ,¬F =

35
400

=0.0875=8.75%

P ¬H , F =
5

400
=0.0125=1.25% P ¬H ,¬F =

355
400

=0.8875=88.75%
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Probability Rules

● Any event A can be written as the or of two disjoint 
events (A  B) and (A  ¬B)

● In general, if B
i
 i=1,2,...,n is a set of exhaustive and 

mutually exclusive propositions

● Moreover, picking A=true:

P A=P A , BP A ,¬B

P A=∑i
P A , Bi

P BP ¬B=1

marginalization/
sum rule
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Conditional Probabilities

● P(A|B)= belief of A given that I know B
● Definition according to the frequentist approach:

● Interpretation: fraction of the worlds where B is true 
in which also A is true

● If P(B)=0 than p(A|B) is not defined

P A∣B=
P A , B

P B
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Example

● H=”having a headache”, F=”having the flu”
● P(H|F)=”having a headache given that I have the 

flu”

● P(H|F)=0.5: H and F are rare but if I have the flu, it 
is probable that I have a headache

H
F 5 5 10

35 355 390
40 360 400

¬H

¬F
P H∣F =

P H , F 

P F 
=

5
400
10
400

=
5

10
=0.5=50%
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Example

F F AND H

H



19

Product Rule

● From

● We can derive

● In the Bayesian approach, the conditional 
probability is fundamental and the joint probability 
is derived with the product rule.

P A , B=P A∣BP B product rule

P A∣B=
P A , B

P B
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Bayes Theorem

● Relationship between P(A|B) and P(B|A):
● P(A,B)=P(A|B)P(B), P(A,B)=P(B|A)P(A) =>

● P(A): prior probability
● P(A|B): posterior probability (after learning B)

P A∣B=
P B∣AP A

P B
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Example

● H=”having a headache”
● F=”having the flu”
● P(H)=0.1    P(F)=0.025
● P(H|F)=0.5

● Knowing that I have a headache, the probability of 
having the flu raises to 1/8

P F∣H =
P H∣F P F 

P H 
=

0.5∗0.025
0.1

=0.125
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Chain Rule

● n events E
1
,...,E

n

● Joint event (E
1
,...,E

n
)

● Chain rule:

P E n , , E1=P E n∣E n−1 , E1P E n−1 , , E1

P E n−1 , , E1=P E n−1∣E n−2 , E1P E n−2 , , E1

⋯

P En , , E 1=P E n∣E n−1 , E 1P E 2∣E 1P E1=

∏i=1

n
P E i∣E i−1 ,E1
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Multivalued Hypothesis

● Propositions can be seen as binary variables, i.e. 
variables taking values true or false
– Burglary B: true or false

● Generalization: multivalued variables
– Semaphore S, values: green, yellow, red 

– Propositions are a special case with two values
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Discrete Random Variables

● Variable V, values v
i
 i=1,...,n

● V is also called a discrete random variable

● V=v
i
 is a proposition

● Propositions V=v
i
 i=1,...,n exhaustive  and mutually 

exclusive

● P(v
i
) stands for P(V=v

i
)

● V is described by the set {P(v
i
)|i=1,...,n}, the 

probability distribution of V, indicated with P(V)
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Notation

● We indicate with v a generic value of V
● Set or vector of variables V, values v
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Marginalization

● Multivalued variables A and B

● b
ii
 i=1,...,n values of B

● Or 

● In general

P a =∑i
P a ,biP a =∑i
P a ,bi

P a =∑b
P a ,b

P x =∑y
P x , y sum rule or 

marginalization
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Conjunctions

● A conjunction of two Boolean variables can be 
considered as a single random variable that takes 4 
values

● Example: 
– H and F, values {true, false}

– (H,F), values {(true,true),(true,false),(false,true),
(false,false)}
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Conditional Probabilities

● P(a|b)= belief of A=a given that I know B=b
● Relation to P(a,b)

● Bayes theorem

P a ,b=P a∣bP b

P a∣b=
P a ,b
P b

P a∣b=
P b∣a p a
P b

product rule
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Continuous Random Variables

● A multivalued variable V that takes values from a 
real interval [a,b] is called a continuous random 
variable

● P(V=v)=0, we want to compute P(c≤V≤d)
● V is described by a probability density function   

ρ: [a,b]→[0,1]
● ρ(v) is such that

P c≤V≤d =∫c

d
v dv
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Properties of Continuous Random Variables

● The same as those of discrete random variables 
where summation is replaced by integration:

● Marginalization (sum rule)

● Conditional probability (product rule)

....

 x =∫x , yd y

 x , y =x∣y  y 



31

Mixed Distribution

● We can have a conjunction of discrete and 
continuous variables

● Joint: if one of the variables is continuous, the joint 
is a density:
– X discrete, Y continuous: ρ(x,y)

● Conditional joint: 
– X discrete, Y continuous: P(x|y)

– X discrete, Y continuous, Z discrete: ρ(x,y|z)
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