Summary

- Definition
- Joint Probability
- Conditional probability
- Random Variables
- Continuous Random Variables

Uncertainty

- Reasoning requires simplifications:
- Birds fly
- Smoke suggests fire
- Treatment of exceptions
- How to reason from uncertain knowledge?

How to Perform Inference?

- Use non-numerical techniques
- Logicist: non monotonic logic
- Assign to each proposition a numerical measure of uncertainty
- Neo-probabilist: use probability theory
- Neo-calculist: use other theories:
- fuzzy logic
- certainty factors
- Dempster-Shafer

Probability Theory

- A: Proposition,
- Ex: A=The coin will land heads
- P(A): probability of A
- Frequentist approach: probability as relative frequency
- Repeated random experiments (possible worlds)
- P(A) is the fraction of experiments in which A is true
- Bayesian approach: probability as a degree of belief
- Example: B=burglary tonight

Frequentist Approach

- $\mathrm{A}=$ The coin will land heads
- 100 throws, for each throw we record whether A is true
- Results:

A	$\neg \mathrm{A}$
61	39

$$
P(A)=\frac{61}{100}=0.61=61 \% \quad P(\neg A)=\frac{39}{100}=0.39=39 \%
$$

Frequentist Approach

- $\mathrm{H}=$ ="having a headache"
- 400 patients

$$
\begin{array}{ll}
\mathrm{H} & -\mathrm{H} \\
40 & 360400
\end{array}
$$

$$
P(A)=\frac{40}{400}=0.1=10 \%
$$

Frequentist Approach

- $\mathrm{F}=$ "'having the flu"
- 400 patients

$$
P(A)=\frac{10}{400}=0.025=2.5 \%
$$

Visualizing the Frequentist Approach

- P(A)

All the experiments (worlds) Area=1

Experiments where A is true
Area of the green rectangle $=\mathrm{P}(\mathrm{A})$

Axioms of Probability Theory

$0 \leq P(A) \leq 1$
$P($ Sure Proposition $)=1$
$P(A \vee B)=P(A)+P(B)$
if A and B are mutually exclusive

Visualizing the Axioms

- $0<=\mathrm{P}(\mathrm{A})<=1$: the area cannot get smaller than 0 and larger than 1

All the experiments (worlds) Area=1

Visualizing the Axioms

- $P(A \vee B)=P(A)+P(B)$ if they are mutually exclusive
- Mutually exclusive=> no world in common=> non overlapping $=>$ the area is the sum

Joint Probability

- Consider the events
- $\mathrm{H}=$ "'having a headache"
- F="having the flu"
- Joint event: $\mathrm{H} \wedge \mathrm{F}=$ "'having a headache and the flu"
- Also written as H,F
- Joint probability: $\mathrm{P}(\mathrm{H} \wedge \mathrm{F})=\mathrm{P}(\mathrm{H}, \mathrm{F})$
- Frequentist interpretation:
- $\mathrm{P}(\mathrm{H} \wedge \mathrm{F})=\mathrm{P}(\mathrm{H}, \mathrm{F})$ is the fraction of experiments (in this case patients) where both H and F holds

Joint Probability

- Example: 400 patients

	H	$\neg \mathrm{H}$	
F	5	5	10
$\neg \mathrm{~F}$	35	355	390
	40	360	400

$P(H, F)=\frac{5}{400}=0.0125=1.25 \% \quad P(H, \neg F)=\frac{35}{400}=0.0875=8.75 \%$
$P(\neg H, F)=\frac{5}{400}=0.0125=1.25 \% \quad P(\neg H, \neg F)=\frac{355}{400}=0.8875=88.75 \%$

Probability Rules

- Any event A can be written as the or of two disjoint events $(\mathrm{A} \wedge \mathrm{B})$ and $(\mathrm{A} \wedge \neg \mathrm{B})$

$$
P(A)=P(A, B)+P(A, \neg B)
$$

marginalization/

sum rule

- In general, if $\mathrm{B}_{\mathrm{i}} \mathrm{i}=1,2, \ldots, \mathrm{n}$ is a set of exhaustive and mutually exclusive propositions

$$
P(A)=\sum_{i} P\left(A, B_{i}\right)
$$

- Moreover, picking $\mathrm{A}=$ true:

$$
P(B)+P(\neg B)=1
$$

Conditional Probabilities

- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$ belief of A given that I know B
- Definition according to the frequentist approach:

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

- Interpretation: fraction of the worlds where B is true in which also A is true
- If $P(B)=0$ than $p(A \mid B)$ is not defined

Example

- $\mathrm{H}=$ "'having a headache", $\mathrm{F}=$ "having the flu"
- $\mathrm{P}(\mathrm{H} \mid \mathrm{F})=$ '"having a headache given that I have the flu"

$$
\begin{array}{|r|r|r|r|}
\hline & \mathrm{H} & \neg \mathrm{H} \\
\mathrm{~F} & 5 & 5 & 10 \\
\neg \mathrm{~F} & 35 & 355 & 390 \\
40 & 360 & 400
\end{array} \quad P(H \mid F)=\frac{P(H, F)}{P(F)}=\frac{\frac{5}{400}}{\frac{10}{400}}=\frac{5}{10}=0.5=50 \%
$$

- $\mathrm{P}(\mathrm{H} \mid \mathrm{F})=0.5$: H and F are rare but if I have the flu, it is probable that I have a headache

Example

Product Rule

- From

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

- We can derive

$$
P(A, B)=P(A \mid B) P(B) \quad \text { product rule }
$$

- In the Bayesian approach, the conditional probability is fundamental and the joint probability is derived with the product rule.

Bayes Theorem

- Relationship between $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ and $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$:
- $\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B}), \mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})=>$

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- $\mathrm{P}(\mathrm{A})$: prior probability
- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$: posterior probability (after learning B)

Example

- $\mathrm{H}=$ "'having a headache"
- $\mathrm{F}=$ "'having the flu"
- $\mathrm{P}(\mathrm{H})=0.1 \quad \mathrm{P}(\mathrm{F})=0.025$
- $\mathrm{P}(\mathrm{H} \mid \mathrm{F})=0.5$

$$
P(F \mid H)=\frac{P(H \mid F) P(F)}{P(H)}=\frac{0.5 * 0.025}{0.1}=0.125
$$

- Knowing that I have a headache, the probability of having the flu raises to $1 / 8$

Chain Rule

- n events E_{1}, \ldots, E_{n}
- Joint event $\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{n}}\right)$

$$
\begin{aligned}
& P\left(E_{n}, \ldots, E_{1}\right)=P\left(E_{n} \mid E_{n-1} \ldots, E_{1}\right) P\left(E_{n-1}, \ldots, E_{1}\right) \\
& P\left(E_{n-1}, \ldots, E_{1}\right)=P\left(E_{n-1} \mid E_{n-2} \ldots, E_{1}\right) P\left(E_{n-2}, \ldots, E_{1}\right)
\end{aligned}
$$

-••

- Chain rule:

$$
\begin{aligned}
P\left(E_{n}, \ldots, E_{1}\right)= & P\left(E_{n} \mid E_{n-1} \ldots, E_{1}\right) \ldots P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)= \\
& \prod_{i=1}^{n} P\left(E_{i} \mid E_{i-1}, \ldots E_{1}\right)
\end{aligned}
$$

Multivalued Hypothesis

- Propositions can be seen as binary variables, i.e. variables taking values true or false
- Burglary B: true or false
- Generalization: multivalued variables
- Semaphore S, values: green, yellow, red
- Propositions are a special case with two values

Discrete Random Variables

- Variable V, values $v_{i} i=1, \ldots, n$
- V is also called a discrete random variable
- $\mathrm{V}=\mathrm{v}_{\mathrm{i}}$ is a proposition
- Propositions $\mathrm{V}=\mathrm{v}_{\mathrm{i}} \mathrm{i}=1, \ldots, \mathrm{n}$ exhaustive and mutually exclusive
- $\mathrm{P}\left(\mathrm{v}_{\mathrm{i}}\right)$ stands for $\mathrm{P}\left(\mathrm{V}=\mathrm{v}_{\mathrm{i}}\right)$
- V is described by the set $\left\{\mathrm{P}\left(\mathrm{v}_{\mathrm{i}}\right) \mid \mathrm{i}=1, \ldots, \mathrm{n}\right\}$, the probability distribution of V , indicated with $\mathrm{P}(\mathrm{V})$

Notation

- We indicate with v a generic value of V
- Set or vector of variables \mathbf{V}, values \mathbf{v}

Marginalization

- Multivalued variables A and B
- $b_{i} i=1, \ldots, n$ values of B

$$
P(a)=\sum_{i} P\left(a, b_{i}\right)
$$

- Or

$$
P(a)=\sum_{b} P(a, b)
$$

- In general

$$
P(\boldsymbol{x})=\sum_{y} P(\boldsymbol{x}, \boldsymbol{y})
$$

sum rule or marginalization

Conjunctions

- A conjunction of two Boolean variables can be considered as a single random variable that takes 4 values
- Example:
- H and F, values \{true, false \}
- (H,F), values \{(true,true),(true,false),(false,true), (false,false) $\}$

Conditional Probabilities

- $\mathrm{P}(\mathrm{a} \mid \mathrm{b})=$ belief of $\mathrm{A}=$ a given that I know $\mathrm{B}=\mathrm{b}$
- Relation to $\mathrm{P}(\mathrm{a}, \mathrm{b})$

$$
\begin{aligned}
& P(a, b)=P(a \mid b) P(b) \quad \text { product rule } \\
& P(a \mid b)=\frac{P(a, b)}{P(b)}
\end{aligned}
$$

- Bayes theorem

$$
P(a \mid b)=\frac{P(b \mid a) p(a)}{P(b)}
$$

Continuous Random Variables

- A multivalued variable V that takes values from a real interval $[\mathrm{a}, \mathrm{b}]$ is called a continuous random variable
- $\mathrm{P}(\mathrm{V}=\mathrm{v})=0$, we want to compute $\mathrm{P}(\mathrm{c} \leq \mathrm{V} \leq \mathrm{d})$
- V is described by a probability density function $\rho:[a, b] \rightarrow[0,1]$
- $\rho(\mathrm{v})$ is such that

$$
P(c \leq V \leq d)=\int_{c}^{d} \rho(v) d v
$$

Properties of Continuous Random Variables

- The same as those of discrete random variables where summation is replaced by integration:
- Marginalization (sum rule)

$$
\rho(\boldsymbol{x})=\int \rho(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y}
$$

- Conditional probability (product rule)

$$
\rho(x, y)=\rho(x \mid y) \rho(y)
$$

Mixed Distribution

- We can have a conjunction of discrete and continuous variables
- Joint: if one of the variables is continuous, the joint is a density:
- X discrete, Y continuous: $\rho(\mathrm{x}, \mathrm{y})$
- Conditional joint:
- X discrete, Y continuous: $\mathrm{P}(\mathrm{x} \mid \mathrm{y})$
- X discrete, Y continuous, Z discrete: $\rho(\mathrm{x}, \mathrm{y} \mid \mathrm{z})$

