Apprendimento basato sulle istanze

Apprendimento basato sulle istanze

- Apprendimento: semplice memorizzazione di tutti gli esempi <x_i,f(x_i)>
- Classificazione di una nuova istanza x_j: reperimento degli esempi piu' simili e classificazione sulla base di questi

Nearest neighbour

 Nearest neighbour (o 1-nearest neighbour): data una nuova istanza di query x_q, si cerca prima l'esempio piu' vicino x_n e poi si stima f(x_q)

$$f'(x_q)=f(x_n)$$

dove f' è la stima di f

- k-nearest neighbour: si considerano i k esempi piu' vicini a x_q
 - Se la funzione f e' discreta, allora si restituisce il valore v di f piu' frequente tra i k esempi
 - Ogni esempio x_i assegna un voto al valore v per il quale f(x_i)=v

$$f'(x_q) = \underset{v \in V}{\operatorname{arg\,max}} \sum_{i=1}^k \delta(v, f(x_i))$$

- dove f: \Re^n →V e $\delta(a,b)$ =1 se a=b altrimenti $\delta(a,b)$ =0

 Se la funzione f e' continua, si restituisce la media tra i valori di f per i k esempi

$$f'(x_q) = \frac{\sum_{i=1}^{k} f(x_i)}{k}$$

- Vantaggi: non c'e' bisogno di inferire una descrizione globale della funzione f, si generano solo approssimazioni locali, utile se f e' molto complessa
- Svantaggi:
 - alto tempo per la classificazione (devono venire considerati tutti gli esempi)
 - Tutti gli attributi sono considerati per reperire i casi dalla base di conoscenza: se il concetto target dipende solo da pochi attributi, gli esempi effettivamente piu' simili possono essere a grande distanza

- Assunzione: le istanze sono punti di Rn
- Come distanza si può utilizzare la distanza euclidea:
- $x = \langle a_1(x), a_2(x), ..., a_n(x) \rangle$

$$d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} (a_r(x_i) - a_r(x_j))^2}$$

Altre distanze

Distanza di Minkowski di ordine p

$$d(x_i, x_j) = \left(\sum_{r=1}^{n} \left| a_r(x_i) - a_r(x_j) \right|^p \right)^{1/p}$$

- p=2 => distanza euclidea
- p=1 => distanza Manhattan

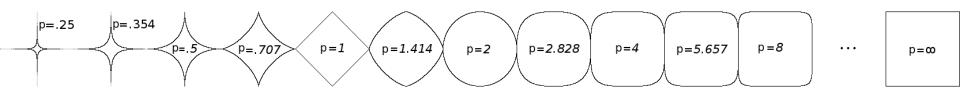
$$d(x_i, x_j) = \sum_{r=1}^{n} |a_r(x_i) - a_r(x_j)|$$

p=∞ => distanza di Chebyshev

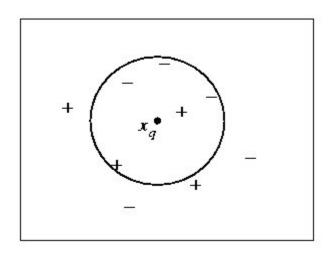
$$d(x_i, x_j) = \lim_{p \to \infty} \left(\sum_{r=1}^n |a_r(x_i) - a_r(x_j)|^p \right)^{1/p} =$$

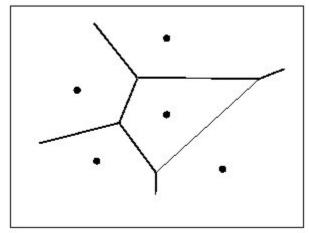
$$= \max_{r=1}^{n} \left| a_r(x_i) - a_r(x_j) \right|$$

Luoghi dei punti a distanza di Minkowski 1



Esempi in R₂





- 1-NN classifica l'esempio come positivo
- 5-NN classifica l'esempio come negativo

Diagramma di Voronoi (1-NN):
 il poligono convesso che
 circonda ciascun punto indica
 la regione più vicina al punto
 (http://www.cs.cornell.edu/Info/Pe
 ople/chew/Delaunay.html)

- Gli attributi possono avere diverse scale e quindi la loro importanza nella misura della distanza può essere diversa
- Per risolvere questo problema, prima di calcolare la distanza, si cambia la scala di ciascun attributo in modo che i valori dell'attributo varino tra 0 e 1
 - Siano a_{imin} a_{imax} rispettivamente i valori minimo e massimo dell'attributo a_i nel training set
 - Il valore dell'attributo a'_i(x) scalato tra 0 e 1 è dato da

$$a'_{i}(x) = \frac{a_{i}(x) - a_{i\min}}{a_{i\max} - a_{i\min}}$$

- Se i punti non appartengono a Rn ma gli attributi (alcuni o tutti) sono nominali allora è necessario definire una distanza tra i valori di tali attributi
 - Ad esempio, qual'è la distanza tra basso, medio e alto?
- Nel caso più semplice si assegna distanza 0 se i valori sono identici, altrimenti distanza 1
 - La distanza tra basso e basso è 0, tra basso e alto è 1
- In altri casi si possono utilizzare distanze definite ad hoc, basate su informazione extra disponibile sull'attributo (scale ordinali)
 - Ad esempio si può assegnare una distanza inferiore alla coppia basso e medio rispetto alla coppia basso e alto

Esempio

No	Outlook	Temp	Humid	Windy	Class
D1	sunny	mild	normal	Т	Р
D2	sunny	hot	high	T	Ν
D3	sunny	hot	high	F	Ν
D4	sunny	mild	high	F	N
D5	sunny	cool	normal	F	Р
D6	overcast	mild	high	T	Р
D7	overcast	hot	high	F	Р
D8	overcast	cool	normal	T	Р
D9	overcast	hot	normal	F	Р
D10	rain	mild	high	T	N
D11	rain	cool	normal	T	Ν
D12	rain	mild	normal	F	Р
D13	rain	cool	normal	F	Р
D14	rain	mild	high	F	Р

Esempio

- Caso da classificare:
- <rain,cool,high,T>
- Distanza dagli esempi (senza usare informazione extra sugli attributi):

D1: √3

D2: √2

D3: √3

D4: √3

D5: √3

D6: √2

D7: √3

D8: √2

D9: 2

D10: 1

D11: 1

D12: √3

D13: √2

D14: √2

Esempio

- 1-NN: in questo caso ci sono due esempi che sono a minore distanza (1) dal caso: D10 e D11, entrambi appartengono alla classe N
- Quindi il caso è classificato come N
- Se gli esempi a minore distanza avessero avuto classe diversa, si sarebbe scelta la classe di maggioranza

Estensioni di k-NN

- NN pesato sulla base della distanza: il contributo di ciascuno dei k vicini e' pesato sulla base della distanza dal punto da classificare x_α
- Funzione discreta: si pesa ciascun voto sulla base dell'inverso del quadrato della distanza

$$f'(x_q) = \underset{v \in V}{\operatorname{arg\,max}} \sum_{i=1}^k w_i \delta(v, f(x_i))$$

$$w_i = \frac{1}{d(x_q, x_i)^2}$$

Estensioni di k-NN

 Funzione continua: si pesa ciascun contributo alla media con l'inverso del quadrato della distanza

$$f'(x_q) = \frac{\sum_{i=1}^{k} w_i f(x_i)}{\sum_{i=1}^{k} w_i}$$

$$w_i = \frac{1}{d(x_q, x_i)^2}$$

Osservazione

- Aggiungendo un coefficiente basato sulla distanza, si potrebbero considerare tutti gli esempi per la classificazione invece dei k piu' vicini
- In questo caso si parla di un metodo globale invece che locale come il k-NN

Osservazioni

- k-NN e' robusto agli errori perche' si prende la media di k esempi
- Bias induttivo: assunzione che la classificazione di una istanza x_q sia simile a quella dei suoi k vicini

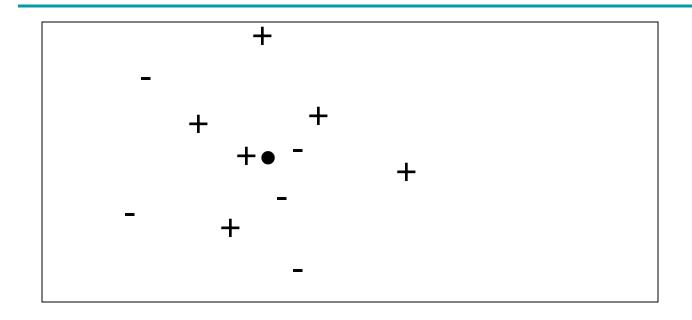
Curse of dimensionality

- k-NN considera tutti gli attributi degli esempi, in contrasto con gli algoritmi per l'apprendimento di regole e alberi di decisione che selezionano solo gli attributi piu' rilevanti
 - Esempio: 20 attributi di cui solo 2 rilevanti per la classificazione delle istanze
- Soluzioni:
 - Allunga ciascun asse di un peso w_i,
 - w₁,...w_n sono scelti mediante cross-validation: un sottoinsieme degli esempi e' scelto come insieme di training, i pesi sono scelti in modo da minimizzare l'errore nel classificare i rimanenti esempi
 - Questo processo va ripetuto piu' volte in modo da affinare i pesi w_i

Curse of dimensionality

 Un approccio alternativo consiste nel porre alcuni pesi a 0, sempre utilizzando la cross validation

Esercizio



- Si indichi la classificazione del punto con 1-NN,
 3-NN e 5-NN
- 1-NN=+, 3-NN=-, 5-NN=+