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Predictive ILP

Predictive ILP

Aim:
classifying instances of the domain, i.e.
predicting the class

Two settings:
Learning from entailment
Learning from interpretations
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Predictive ILP Learning from entailment

Learning from Entailment

Given
A set of positive example E+

A set of negative examples E−

A background knowledge B
A space of possible programs H

Find a program P ∈ H such that
∀e+ ∈ E+, P ∪ B |= e+ (completeness)
∀e− ∈ E−, P ∪ B 6|= e− (consistency)
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Predictive ILP Learning from entailment

Targeted Mailing

Name Category Size Price

bike_1 sport l 1000

jacket_2 clothing l 150

tent_2 outdoor m 250

Name Article Quantity

john bike_1 2

ann jacket_2 1

steve bike_1 1

john tent_2 1

ann bike_1 3

Name Age Sex Address

john 35 m ca

mary 25 f ca

ann 29 f wa

steve 31 m va

customer article

transaction

Name

ann

respond
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Predictive ILP Learning from entailment

Mailing Example

Positive examples E+ = {respond(ann)}
Negative examples
E− = {respond(john), respond(mary), respond(steve)}
Background B = facts for relations customer , transaction and
article
customer(john,35,m, ca).
customer(mary ,25, f , ca).
customer(ann,29, f ,wa). . . .
transaction(john,bike_1,2).
transaction(ann, jacket_2,1). . . .
article(bike_1, sport , l ,1000).
article(jacket_2, clothing, l ,150). . . .
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Predictive ILP Learning from entailment

Mailing Example

Space of programs H: programs containing clauses with
in the head respond(Customer)
in the body a conjunction of literals from the set
{customer(Customer ,Age,Sex ,Address),
transaction(Customer ,Article,Quantity),
article(Article,Category ,Price),
Age = constant ,Sex = constant , . . .}

Possible solution
respond(Customer)← transaction(Customer ,Article,_Quantity),
article(Article,Category ,_Size,_Price),
Category = clothing
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Predictive ILP Learning from entailment

Definitions

covers(P,e) = true if B ∪ P |= e
covers(P,E) = {e ∈ E |covers(P,e) = true}
A theory P is more general than Q if covers(P,U) ⊇ covers(Q,U)

If B ∪ P |= Q then B ∪Q |= e⇒ B ∪ P |= e so P is more general
than Q
A clause C is more general than D if
covers({C},U) ⊇ covers({D},U)

If B,C |= D then C is more general than D
If a clause covers an example, all of its generalizations will (covers
is antimonotonic with respect to generalization)
If a clause does not cover an example, none of its specializations
will
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Predictive ILP Learning from entailment

Theta Subsumption

A clause
h← b1, . . . ,bn
can be seen as a set of literals {h,not b1, . . . ,not bn}
A substitution θ is a replacement of variable with terms:
θ = {X/a,Y/b}
C θ-subsumes D (C ≥ D) if there exists a substitution θ such that
Cθ ⊆ D [Plotkin 70]
C ≥ D ⇒ C |= D ⇒ B,C |= D ⇒ C is more general than D
C |= D 6⇒ C ≥ D
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Predictive ILP Learning from entailment

Examples of Theta Subsumption

C1 = father(X ,Y )← parent(X ,Y )

C2 = father(X ,Y )← parent(X ,Y ),male(X )

C3 = father(john, steve)← parent(john, steve),male(john)
C1 = {father(X ,Y ),not parent(X ,Y )}
C2 = {father(X ,Y ),notparent(X ,Y ),not male(X )}
C3 =
{father(john, steve),not parent(john, steve),not male(john)}
C1 ≥ C2 with θ = ∅
C1 ≥ C3 with θ = {X/john,Y/steve}
C2 ≥ C3 with θ = {X/john,Y/steve}
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Predictive ILP Learning from entailment

Example of C |= D 6⇒ C ≥ D

C = even(X )← even(half (X )).

D = even(X )← even(half (half (X ))).

C |= D: we can obtain D by resolving C with itself, but
C 6≥ D: there is no substitution θ such that Cθ ⊆ D
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Predictive ILP Learning from entailment

In Practice

Coverage test: SLD or SLDNF resolution
Try to derive e from B ∪ P ∪ {C}

Generality order:
θ-subsumption
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Predictive ILP Learning from entailment

Properties of Theta Subsumption

θ-subsumption induces a lattice in the space of clauses
Every set of clauses has a least upper bound (lub) and a greatest
lower bound (glb)
This is not true for the generality relation based on logical
consequence
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Predictive ILP Learning from entailment

Lattice
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Predictive ILP Learning from entailment

Least General Generalization

lgg(C,D) = least upper bound in the θ-subsumption order
An algorithm exists which has complexity O(s2) where s is the
size of the clauses
Example:

C = father(john,mary)← parent(john,mary),male(john)
D = father(david , steve)← parent(david , steve),male(david)
lgg(C,D) = father(X ,Y )← parent(X ,Y ),male(X )

For a set of n clauses the complexity is O(sn)
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Predictive ILP Learning from entailment

Least General Generalization Algorithm

The algorithm keeps a set of anti-substituons A that contains
elements of the form V/t1, t2 meaning that variable V replaced
the term t1 in the first formula and the term t2 in the second
formula
The lgg of two terms f1(s1, . . . , sn) and f2(t1, . . . , tm) is:

f1(lgg(s1, t1), . . . , lgg(sn, tn))

if f1/n = f2/m, otherwise
if an element of the form V/f1(s1, . . . , sn), f2(t1, . . . , tm) is present
in A, then the lgg is V
otherwise let V be a new variable, add
V/f1(s1, . . . , sn), f2(t1, . . . , tm) to A and the lgg is V
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Predictive ILP Learning from entailment

Least General Generalization Algorithm

Examples

lgg(f (a,b, c), f (a, c,d)) = f (lgg(a,a), lgg(b, c), lgg(c,d)) = f (a,X ,Y ),
A = {X/b, c,Y/c,d}
lgg(f (a,a), f (b,b)) = f (lgg(a,b), lgg(a,b)) = f (X ,X ), A = {X/a,b}

Note that the same variable X is used in both arguments of the
second example because it indicates the lgg of the same two
terms

lgg(f (a,b), f (b,a)) = f (lgg(a,b), lgg(b,a)) = f (X ,Y ),
A = {X/a,b,Y/b,a}

Note that two different variables X and Y are used because the
order of the terms is different
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Predictive ILP Learning from entailment

Least General Generalization Algorithm

The lgg of two literals L1 = (not)p(s1, ..., sn) and
L2 = (not)q(t1, ..., tm) is

undefined if L1 and L2 do not have the same sign or if p/n 6= q/m,
otherwise

lgg(L1,L2) = (not)p(lgg(s1, t1), ...lgg(sn, tn))

Examples:
lgg(parent(john,mary),parent(john, steve)) = parent(john,X )
A = {X/mary , steve}
lgg(parent(john,mary),not parent(john, steve)) = undefined
lgg(parent(john,mary), father(john, steve)) = undefined
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Predictive ILP Learning from entailment

Least General Generalization Algorithm

lgg(C,D) = {lgg(L,K )|L ∈ C,K ∈ D and lgg(L,K ) is defined}
Examples

C = father(john,mary)← parent(john,mary),male(john)
D = father(david , steve)← parent(david , steve),male(david)
lgg(C,D) = father(X ,Y )← parent(X ,Y ),male(X ),
A = {X/john,david ,Y/mary , steve}

C = win(conf1)← occ(place1, x , conf1),occ(place2,o, conf1)
D = win(conf2)← occ(place1, x , conf2),occ(place2, x , conf2)
lgg(C,D) = win(Conf )← occ(place1, x ,Conf ),occ(L, x ,Conf ),
occ(M,Y ,Conf ),occ(place2,Y ,Conf )
A = {Conf/conf1, conf2,L/place1,place2,M/place2,place1,Y/o, x}
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Predictive ILP Learning from entailment

Relative Subsumption

θ subsumption does not take into account background knowledge
C ≥ D ⇔ |= ∀(Cθ → D)

Relative Subsumption [Plotkin 71]: C θ subsume D relative to
background B (C ≥B D) if there exists a substitution θ such that
B |= ∀(Cθ → D)
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Predictive ILP Learning from entailment

Relative Least General Generalization

Relative Least General Generalization (rlgg): lgg with respect to
relative subsumption.
It does not exists in the general case of B a set of Horn clauses
It exists in the case that B is a set of ground atoms and can be
computed in this way:
rlgg((H1← B1), (H2← B2)) =
lgg((H1← B1,B), (H2← B2,B))
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Predictive ILP Learning from entailment

Relative Least General Generalization

Example

C1 = father(john,mary)

C2 = father(david , steve)

B = {parent(john,mary),parent(david , steve),
parent(kathy ,mary), female(kathy),
male(john),male(david)}
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Predictive ILP Learning from entailment

Relative Least General Generalization

Example

C1← B = fa(j ,m)← p(j ,m),p(d , s),p(k ,m), f (k),m(j),m(d)

C2← B = fa(d , s)← p(j ,m),p(d , s),p(k ,m), f (k),m(j),m(d)

rlgg(C1,C2) = fa(X ,Y )← p(j ,m),p(X ,Y ),p(Z ,m),

p(W ,U),p(d , s),p(S,U),p(T ,m),p(R,Y ),p(k ,m),

f (k),m(j),m(X ),m(W ),m(d)

A = {X/j ,d ,Y/m, s,Z/j , k ,W/d , j ,U/s,m,S/d , k ,T/k , j ,R/k ,d}

F. Riguzzi (ENDIF) Inductive Logic Programming 23 / 58



Predictive ILP Learning from entailment

Reduced clause

Two clauses C and D are equivalent (relative to B) if C ≥ D and
D ≥ C (C ≥B D and D ≥B C)
A clause C is reduced (relative to B) if it does not contain any
subset D that is equivalent to C (relative to B)
C = rlgg(C1,C2) = fa(X ,Y )← p(j ,m),p(X ,Y ),p(Z ,m),
p(W ,U),p(d , s),p(S,U),p(T ,m),p(R,Y ),p(k ,m),
f (k),m(j),m(X ),m(W ),m(d)
is equivalent to
D = fa(X ,Y )← p(j ,m),p(X ,Y ),p(d , s),p(k ,m),
f (k),m(j),m(X ),m(d)
and is equivalent relative to B to
D = fa(X ,Y )← p(X ,Y ),m(X )
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Predictive ILP Learning from entailment

Bottom-up Systems

Covering loop
Search for a clause from specific to general

Learn(E ,B)
P := 0
repeat /* covering loop */

C :=GenerateClauseBottomUp(E ,B)
P := P ∪ {C}
Remove from E the positive examples covered by P

until Sufficiency criterion
return P
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Predictive ILP Learning from entailment

Golem [Muggleton, Feng 90]

Bottom-up system
Generalization by means of rlgg
Sufficiency criterion: E+ = ∅
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Predictive ILP Learning from entailment

Golem

GolemGenerateClause(E ,B)
select randomly some couples of examples from E+

compute their rlgg
let C be the rlgg that covers most positive examples

while covering no negative
repeat

randomly select some examples from E+

compute the rlgg between C and each selected example
let C be the rlgg that covers most positive examples

while covering no negative
remove from E+ the examples covered by C

while C covers no negatives
remove literals from the body of C until C covers

some negative examples
return C
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Predictive ILP Learning from entailment

Top-down Systems

Covering loop as bottom-up systems
Search for a clause from general to specific using beam search
Score clauses using a heuristic function

F. Riguzzi (ENDIF) Inductive Logic Programming 28 / 58



Predictive ILP Learning from entailment

Top-down Systems

GenerateClauseTopDown(E,B)
Beam := {p(X )← true}
BestClause := null
repeat /* specialization loop */

Remove the first clause C of Beam
compute ρ(C)
score all the refinements
update BestClause
add all the refinements to the beam
order the beam according to the score
remove the last clauses that exceed the dimension d

until the Necessity criterion is satisfied
return BestClause
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Predictive ILP Learning from entailment

Typical Stopping Criteria

Sufficiency criteria:
E+ = ∅
GenerateClauseTopDown returns null
a disjunction of the above

Necessity criteria
the number of negative examples covered by BestClause is 0
the number of negative examples covered by BestClause is below a
threshold
Beam is empty
a disjunction of the above
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Predictive ILP Learning from entailment

Refinement Operator

ρ(C) = {D|D ∈ L,C ≥ D}
where L is the space of possible clauses
A refinement operator usually generates only minimal
specializations
A typical refinement operator applies two syntactic operations to a
clause

it applies a substitution to the clause
it adds a literal to the body
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Predictive ILP Learning from entailment

Heuristic Functions

n+,n− number of positive and negative examples in the training
set, n = n+ + n−

n+(C),n−(C) number of positive and negative examples covered
by clause C
n(C) = n+(C) + n−(C)

Accuracy: Acc = P(+|C) (more accurately Precision), P(+|C)
can be estimated by

relative frequency: P(+|C) = n+(C)
n(C)

m-estimate: P(+|C) = n+(C)+mP(+)
n(C)+m , where P(+) = n+/n

Laplace: m-estimate with m = 2,P(+) = 0.5 P(+|C) = n+(C)+1
n(C)+2
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Predictive ILP Learning from entailment

Heuristic Functions

Coverage: Cov = n+(C)− n−(C)

Informativity: Inf = log2(Acc)
Weighted relative accuracy: WRAcc = P(C)(P(+|C)− P(+)),
where P(C) = n(C)/n
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Predictive ILP Learning from entailment

FOIL [Quinlan 90]

Top-down system with
Dimension of the beam: 1
Heuristic: (approximately) weighted gain of Inf :
H = n(C′)(Inf (C′)− Inf (C))
Refinement operator: addition of a literal or unification of two
variables
Sufficiency criterion: E+ = ∅
Necessity criterion: n−(BestClause) = 0
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Predictive ILP Learning from entailment

Progol [Muggleton 95]

Top-down system with
Dimension of the beam: user defined
Heuristic: Compression: Comp = n+(C)− n−(C)− |C|
Refinement operator: adds a literal from the most specific clause
(bottom clause) ⊥ after having replaced some of the constants with
variables
Sufficiency criterion: E+ = ∅
Necessity criterion: Beam = ∅ or a maximum number of iterations
of the loop is reached
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Predictive ILP Learning from entailment

Bottom Clause ⊥ [Muggleton 95]

Most specific clause covering an example e
Form: e← B
B: set of ground literals that are true regarding the example e
B obtained by considering the constants in e and querying the
predicates of the background for true atoms regarding these
constants
A list of constants is kept, it is enlarged with those in the answers
to the queries and the procedure is iterated a user-defined
number of times
Example:

e = father(john,mary)
B = {parent(john,mary),parent(david , steve),
parent(kathy ,mary), female(kathy),male(john),male(david)}
⊥ = father(john,mary)←
parent(john,mary),male(john),parent(kathy ,mary), female(kathy).
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Predictive ILP Learning from interpretations

Learning from Interpretations

Interpretation = set of ground atoms.
Aim: learning a classifier for logical interpretations
Classifier: a set of disjunctive clauses T
Disjunctive clause
C = h1 ∨ h2 ∨ . . . ∨ hn ← b1,b2, . . . ,bm
can be seen as a set of literals
{h1, . . . ,hn,not b1, . . . ,not bm}
head(C) = h1 ∨ h2 ∨ . . . ∨ hn or {h1, . . . ,hn}
body(C) = b1,b2, . . . ,bm or {b1, . . . ,bm}
body+(C) = set of positive literals of body(C)

body−(C) = set of atoms of negative literals of body(C)
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Predictive ILP Learning from interpretations

Learning from Interpretations

Set of clauses as a classifier
an interpretation I is positive if all the clauses of T are true in the
interpretation (I |= T )
an interpretation I is negative if there exists at least one clause of T
that is false in it (I 6|= T )

A clause C is true in an interpretation I (I |= C) if for all grounding
substitutions θ of C:
I |= body(C)θ ⇒ head(C)θ ∩ I 6= ∅
or
body+(C)θ ⊆ I ∧ body−(C)θ ∩ I = ∅ ⇒ head(C)θ ∩ I 6= ∅
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Predictive ILP Learning from interpretations

Test of the Truth of a Clause

Range restricted clause: all the variables of the clause appear in
positive literals in the body
Range restricted clause C, finite interpretation I: run the query
?− body(C),not head(C) against a logic program containing I
If C = h1 ∨ h2 ∨ . . . ∨ hn ← b1,b2, . . . ,bm then the query is
?− b1,b2, . . . ,bm,not h1,not h2, . . . ,not hn

If the query succeeds, C is false in I. If the query fails, C is true in
I [De Raedt, Bruynooghe 93]
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Predictive ILP Learning from interpretations

Example

I = {female(liz),male(richard),
gorilla(liz),gorilla(richard)}
C = male(X ) ∨ female(X )← gorilla(X ): the clause is true in I
because the query ?− gorilla(X ),not male(X ),not female(X ) fails
C = male(X )← gorilla(X ): the clause is false in I because the
query
?− gorilla(X ),not male(X ) succeeds with θ = {X/liz}.
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Predictive ILP Learning from interpretations

Learning from Interpretations

Given
a space of possible clausal theories H
a set P of interpretations
a set N of interpretations

Find: a clausal theory H ∈ H such that
for all p ∈ P, p |= H
for all n ∈ N, n 6|= H

Less expressive than learning from entailment: no recursive
definitions
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Predictive ILP Learning from interpretations

Test with Background

Background: a normal program B
Truth of a clause C in the interpretation M(B ∪ I) where M is the
model according to the chosen semantics and I is an
interpretation (i.e. B ∪ I |= C)
Range restricted clause C, normal program B containing only
range restricted clauses, interpretation I: run the query
?− body(C),not head(C) against the logic program B ∪ I.
If the query succeeds, C is false in M(B ∪ I) (B ∪ I 6|= C). If the
query fails, C is true in M(B ∪ I) (B ∪ I |= C)
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Predictive ILP Learning from interpretations

Learning from Int. with Background

Given
a space of possible clausal theories H
a set P of interpretations
a set N of interpretations
a background theory B

Find: a clausal theory H ∈ H such that
for all p ∈ P, B ∪ p |= H
for all n ∈ N, B ∪ n 6|= H
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Predictive ILP Learning from interpretations

Generality Relation

cover({C},e) = true if e |= C
C ≥ D ⇒ C |= D ⇒ D is more general than C
the relation is reversed
Example:

false← true
false← gorilla(X )
female(X )← gorilla(X )
female(X ) ∨male(X )← gorilla(X )
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Predictive ILP Learning from interpretations

ICL [De Raedt, Van Laer, 95]

Dual version of a top down entailment algorithm:
coverage loop is performed on negative examples

Updates CN2 to first order

ICL(P,N,B)
H := ∅
repeat

C :=FindBestClause(P,N,B)
if C 6= null then

add C to H
remove from N all interpretations that are false for C

until C = null or N is empty
return H
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Predictive ILP Learning from interpretations

ICL FindBestClause

FindBestClause(P,N,B)
Beam := {false← true}, BestClause := null
while Beam is not empty do

NewBeam := ∅
for each clause C in Beam do

for each refinement Ref of C do
if Ref is better than BestClause and Ref is

statistically significant then
BestClause := Ref

if Ref is not to be pruned then
add Ref to NewBeam
if size of NewBeam > MaxBeamSize then

remove worst clause from NewBeam
Beam := NewBeam

return BestClause
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Predictive ILP Learning from interpretations

ICL Heuristics

n(C)= number of interpretations (positive and negative) where C
is false
n−(C)= number of negative interpretation where C is false

H(C) = p(−|C) = n−(C)+1
n(C)+2

= precision over negative class
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Descriptive ILP

Descriptive ILP

Discovering regularities, patterns
Example tasks:

finding association rules
clustering
subgroup discovery
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Descriptive ILP

Claudien [De Raedt, Dehaspe 97]

Learning problem: Given
a space of possible clausal theories H
a set P of interpretations
a background theory B

Find: a clausal theory H ∈ H such that
∀p ∈ P,B ∪ p |= H
H is maximally specific
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Descriptive ILP

Example

p1 = {female(liz),male(richard),
gorilla(liz),gorilla(richard)}
p2 = {female(ginger),male(fred),
gorilla(ginger),gorilla(fred)}
If H contains only range-restricted, constant-free clauses a solution is:
gorilla(X )← female(X )
gorilla(X )← male(X )
male(X ) ∨ female(X )
← male(X ), female(X )
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Descriptive ILP

Claudien Algorithm

ClausalDiscovery(E ,B)
H := ∅
Beam := {false← true}
while Beam is not empty do

delete from Beam the first clause C
if C is true on E then

H := H ∪ {C}
else

for all C′ ∈ ρ(C) for which not prune(C′) do
Beam := Beam ∪ {C′}

return H
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Descriptive ILP

Pointers

ILPnet2
http://www-ai.ijs.si/~ilpnet2/

Books:
N. Lavrac and S. Dzeroski, Inductive Logic Programming
Techniques and Applications, Ellis Horwood, 1994, freely available
in pdf from
http://www-ai.ijs.si/SasoDzeroski/ILPBook/
L. De Raedt, Logical and relational learning, Springer, 2008
S. Dzeroski and N. Lavrac, editors, Relational Data Mining
Springer, Berlin, 2001
F. Bergadano and D. Gunetti, Inductive Logic Programming - From
Machine Learning to Software Engineering, MIT Press, 1996
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