Probabilistic Logic Languages

Fabrizio Riguzzi

Outline

Probabilistic Logic Languages

- Distribution Semantics
- 3 Expressive Power
- 4 Conversion to Bayesian Networks
- 5 Distribution Semantics with Function Symbols
- 6 Knowledge-Based Model Construction

Combining Logic and Probability

- Useful to model domains with complex and uncertain relationships among entities
- Many approaches proposed in the areas of Logic Programming, Uncertainty in AI, Machine Learning, Databases
- Logic Programming: Distribution Semantics [Sato, 1995]
- A probabilistic logic program defines a probability distribution over normal logic programs (called instances or possible worlds or simply worlds)
- The distribution is extended to a joint distribution over worlds and queries
- The probability of a query is obtained from this distribution

Probabilistic Logic Programming (PLP) Languages under the Distribution Semantics

- Probabilistic Logic Programs [Dantsin, 1991]
- Probabilistic Horn Abduction [Poole, 1993], Independent Choice Logic (ICL) [Poole, 1997]
- PRISM [Sato, 1995]
- Logic Programs with Annotated Disjunctions (LPADs) [Vennekens et al., 2004]
- ProbLog [De Raedt et al., 2007]
- They differ in the way they define the distribution over logic programs

Independent Choice Logic

```
sneezing(X) \leftarrow flu(X), flu\_sneezing(X).

sneezing(X) \leftarrow hay\_fever(X), hay\_fever\_sneezing(X).

flu(bob).

hay\_fever(bob).
```

 $disjoint([flu_sneezing(X) : 0.7, null : 0.3]).$ $disjoint([hay_fever_sneezing(X) : 0.8, null : 0.2]).$

- Distributions over facts by means of disjoint statements
- null does not appear in the body of any rule
- Worlds obtained by selecting one atom from every grounding of each disjoint statement

Independent Choice Logic

4 worlds

 $sneezing(X) \leftarrow flu(X), flu_sneezing(X).$ $sneezing(X) \leftarrow hay_fever(X), hay_fever_sneezing(X).$ flu(bob).hay fever(bob).

 $\begin{array}{ll} \textit{flu_sneezing(bob)}. & \textit{null.} \\ \textit{hay_fever_sneezing(bob)}. & \textit{hay_fever_sneezing(bob)}. \\ \textit{P(w_1)} = 0.7 \times 0.8 & \textit{P(w_2)} = 0.3 \times 0.8 \end{array}$

flu_sneezing(bob).	null.
null.	null.
$P(w_3) = 0.7 \times 0.2$	$P(w_4) = 0.3 imes 0.2$

- sneezing(bob) is true in 3 worlds
- $P(sneezing(bob)) = 0.7 \times 0.8 + 0.3 \times 0.8 + 0.7 \times 0.2 = 0.94$

PRISM

 $sneezing(X) \leftarrow flu(X), msw(flu_sneezing(X), 1).$ $sneezing(X) \leftarrow hay_fever(X), msw(hay_fever_sneezing(X), 1).$ flu(bob). $hay_fever(bob).$

- Distributions over *msw* facts (random switches)
- Worlds obtained by selecting one value for every grounding of each *msw* statement

F. Riguzzi (DMI)

Logic Programs with Annotated Disjunctions

 $sneezing(X) : 0.7 \lor null : 0.3 \leftarrow flu(X).$ $sneezing(X) : 0.8 \lor null : 0.2 \leftarrow hay_fever(X).$ flu(bob). $hay_fever(bob).$

- Distributions over the head of rules
- null does not appear in the body of any rule
- Worlds obtained by selecting one atom from the head of every grounding of each clause

ProbLog

 $sneezing(X) \leftarrow flu(X), flu_sneezing(X).$ $sneezing(X) \leftarrow hay_fever(X), hay_fever_sneezing(X).$ flu(bob). $hay_fever(bob).$ $0.7 :: flu_sneezing(X).$ $0.8 :: hay_fever_sneezing(X).$

- Distributions over facts
- Worlds obtained by selecting or not every grounding of each probabilistic fact

Distribution Semantics

- Case of no function symbols: finite Herbrand universe, finite set of groundings of each disjoint statement/switch/clause
- Atomic choice: selection of the *i*-th atom for grounding Cθ of disjoint statement/switch/clause C
 - represented with the triple (C, θ, i)
 - a ProbLog fact p :: F is interpreted as $F : p \lor null : 1 p$.
- Example $C_1 = disjoint([flu_sneezing(X) : 0.7, null : 0.3]), (C_1, {X/bob}, 1)$
- Composite choice κ: consistent set of atomic choices
- $\kappa = \{ (C_1, \{X/bob\}, 1), (C_1, \{X/bob\}, 2) \}$ not consistent
- The probability of composite choice κ is

$$P(\kappa) = \prod_{(C,\theta,i)\in\kappa} P_0(C,i)$$

Distribution Semantics

- Selection *σ*: a total composite choice (one atomic choice for every grounding of each disjoint statement/clause)
- $\sigma = \{ (C_1, \{X/bob\}, 1), (C_2, \{X/bob\}, 1) \}$

$$C_1 = disjoint([flu_sneezing(X) : 0.7, null : 0.3]).$$

 $C_2 = disjoint([hay_fever_sneezing(X) : 0.8, null : 0.2]).$

- A selection σ identifies a logic program w_{σ} called world
- The probability of w_{σ} is $P(w_{\sigma}) = P(\sigma) = \prod_{(C,\theta,i)\in\sigma} P_0(C,i)$
- Finite set of wrolds: $W_T = \{w_1, \ldots, w_m\}$
- P(w) distribution over worlds: $\sum_{w \in W_T} P(w) = 1$

Distribution Semantics

- Herbrand base $H_T = \{A_1, \ldots, A_n\}$
- $P(a_i|w) = 1$ if A_i is true in w and 0 otherwise
- $P(a_j) = \sum_w P(a_j, w) = \sum_w P(a_j|w)P(w) = \sum_{w \models A_j} P(w)$

Example Program (ICL)

4 worlds

 $sneezing(X) \leftarrow flu(X), flu_sneezing(X).$ $sneezing(X) \leftarrow hay_fever(X), hay_fever_sneezing(X).$ flu(bob).hay fever(bob).

 $\begin{array}{ll} \textit{flu_sneezing(bob)}. & \textit{null.} \\ \textit{hay_fever_sneezing(bob)}. & \textit{hay_fever_sneezing(bob)}. \\ \textit{P(w_1)} = 0.7 \times 0.8 & \textit{P(w_2)} = 0.3 \times 0.8 \end{array}$

flu_sneezing(bob).	null.
null.	null.
$P(w_3) = 0.7 \times 0.2$	$P(w_4) = 0.3 imes 0.2$

- sneezing(bob) is true in 3 worlds
- $P(sneezing(bob)) = 0.7 \times 0.8 + 0.3 \times 0.8 + 0.7 \times 0.2 = 0.94$

Example Program (LPAD)

4 worlds

```
\begin{array}{l} sneezing(bob) \leftarrow flu(bob).\\ sneezing(bob) \leftarrow hay\_fever(bob).\\ flu(bob).\\ hay\_fever(bob).\\ P(w_1) = 0.7 \times 0.8 \end{array}
```

```
sneezing(bob) \leftarrow flu(bob).

null \leftarrow hay_fever(bob).

flu(bob).

hay_fever(bob).

P(w_3) = 0.7 \times 0.2
```

 $\begin{array}{l} \textit{null} \leftarrow \textit{flu(bob)}.\\ \textit{sneezing(bob)} \leftarrow \textit{hay_fever(bob)}.\\ \textit{flu(bob)}.\\ \textit{hay_fever(bob)}.\\ \textit{P(w_2)} = 0.3 \times 0.8 \end{array}$

 $null \leftarrow flu(bob).$ $null \leftarrow hay_fever(bob).$ flu(bob). $hay_fever(bob).$ $P(w_4) = 0.3 \times 0.2$

- sneezing(bob) is true in 3 worlds
- $P(sneezing(bob)) = 0.7 \times 0.8 + 0.3 \times 0.8 + 0.7 \times 0.2 = 0.94$

Example Program (ProbLog)

4 worlds

 $sneezing(X) \leftarrow flu(X), flu_sneezing(X).$ $sneezing(X) \leftarrow hay_fever(X), hay_fever_sneezing(X).$ flu(bob).hay fever(bob).

 $\begin{array}{ll} \textit{flu_sneezing(bob)}. \\ \textit{hay_fever_sneezing(bob)}. & \textit{hay_fever_sneezing(bob)}. \\ \textit{P(w_1)} = 0.7 \times 0.8 & \textit{P(w_2)} = 0.3 \times 0.8 \end{array}$

flu_sneezing(bob).

 $P(w_3) = 0.7 \times 0.2$ $P(w_4) = 0.3 \times 0.2$

- sneezing(bob) is true in 3 worlds
- *P*(*sneezing*(*bob*)) = 0.7 × 0.8 + 0.3 × 0.8 + 0.7 × 0.2 = 0.94 .

UNIVERSITA DEGLI STUD DI FERRARA

Examples

Throwing coins

```
heads(Coin):1/2 ; tails(Coin):1/2 :-
  toss(Coin), \+biased(Coin).
heads(Coin):0.6 ; tails(Coin):0.4 :-
  toss(Coin), biased(Coin).
fair(Coin):0.9 ; biased(Coin):0.1.
toss(coin).
```

Russian roulette with two guns

```
death:1/6 :- pull_trigger(left_gun).
death:1/6 :- pull_trigger(right_gun).
pull_trigger(left_gun).
pull_trigger(right_gun).
```


Examples

Mendel's inheritance rules for pea plants

```
color(X,purple):-cg(X,_A,p).
color(X,white):-cg(X,1,w),cg(X,2,w).
cg(X,1,A):0.5; cg(X,1,B):0.5:-
mother(Y,X),cg(Y,1,A),cg(Y,2,B).
cg(X,2,A):0.5; cg(X,2,B):0.5:-
father(Y,X),cg(Y,1,A),cg(Y,2,B).
```

Probability of paths

```
path(X,X).
path(X,Y):-path(X,Z),edge(Z,Y).
edge(a,b):0.3.
edge(b,c):0.2.
edge(a,c):0.6.
```


Encoding Bayesian Networks

burg	t		f		
	0.1		C	9.9	
eartho	q t			f	
	0.2		2	0.8	3
alarm	۱	t		f	
b=t,e=	=t	1.	0	0.	0
b=t,e=f		0.	8	0.	2
b=f,e=	=t	0.	8	0.	2
b=f,e=	b=f,e=f		1	0.	9

burg(t):0.1 ; burg(f):0.9. earthq(t):0.2 ; earthq(f):0.8. alarm(t):-burg(t),earthq(t). alarm(t):0.8 ; alarm(f):0.2:-burg(t),earthq(f). alarm(t):0.8 ; alarm(f):0.2:-burg(f),earthq(t). alarm(t):0.1 ; alarm(f):0.9:-burg(f),earthq(f).

Try it yourself

• Go to http://cplint.lamping.unife.it/

Expressive Power

- All these languages have the same expressive power
- LPADs have the most general syntax
- There are transformations that can convert each one into the others
- ICL, PRISM: direct mapping
- ICL, PRISM to LPAD: direct mapping

LPADs to ICL

• Clause C_i with variables \overline{X}

$$H_1: p_1 \vee \ldots \vee H_n: p_n \leftarrow B.$$

is translated into

 $H_{1} \leftarrow B, choice_{i,1}(\overline{X}).$ \vdots $H_{n} \leftarrow B, choice_{i,n}(\overline{X}).$ $disjoint([choice_{i,1}(\overline{X}) : p_{1}, \dots, choice_{i,n}(\overline{X}) : p_{n}]).$

LPADs to ProbLog

• Clause C_i with variables \overline{X}

$$H_1: p_1 \vee \ldots \vee H_n: p_n \leftarrow B.$$

is translated into

$$H_{1} \leftarrow B, f_{i,1}(\overline{X}).$$

$$H_{2} \leftarrow B, not(f_{i,1}(\overline{X})), f_{i,2}(\overline{X}).$$

$$\vdots$$

$$H_{n} \leftarrow B, not(f_{i,1}(\overline{X})), \dots, not(f_{i,n-1}(\overline{X})).$$

$$\pi_{1} :: f_{i,1}(\overline{X}).$$

$$\vdots$$

$$\pi_{n-1} :: f_{i,n-1}(\overline{X}).$$
where $\pi_{1} = p_{1}, \pi_{2} = \frac{p_{2}}{1-\pi_{1}}, \pi_{3} = \frac{p_{3}}{(1-\pi_{1})(1-\pi_{2})}, \dots$
• In general $\pi_{i} = \frac{p_{i}}{\prod_{j=1}^{j-1}(1-\pi_{j})}$

Conversion to Bayesian Networks

- PLP can be converted to Bayesian networks
- Conversion for an LPAD T
- For each atom A in H_T a binary variable A
- For each clause C_i in the grounding of T

$$H_1: p_1 \vee \ldots \vee H_n: p_n \leftarrow B_1, \ldots B_m, \neg C_1, \ldots, \neg C_l$$

a variable CH_i with $B_1, \ldots, B_m, C_1, \ldots, C_l$ as parents and H_1, \ldots, H_n and *null* as values

• The CPT of CH_i is

		$B_1 = 1, \ldots, B_m = 1, C_1 = 0, \ldots, C_l = 0$]
$CH_i = H_1$	0.0	<i>p</i> ₁	0.0	1
]
$CH_i = H_n$	0.0	p _n	0.0]
$CH_i = null$	1.0	$1 - \sum_{i=1}^{n} p_i$	1.0	

Conversion to Bayesian Networks

- Each variable *A* corresponding to atom *A* has as parents all the variables *CH_i* of clauses *C_i* that have *A* in the head.
- The CPT for A is:

	at least one parent equal to A	remaining columns
<i>A</i> = 1	1.0	0.0
<i>A</i> = 0	0.0	1.0

Conversion to Bayesian Networks

$$\begin{array}{rcl} C_1 &=& x1: 0.4 \lor x2: 0.6. \\ C_2 &=& x2: 0.1 \lor x3: 0.9. \\ C_3 &=& x4: 0.6 \lor x5: 0.4 \leftarrow x1. \\ C_4 &=& x5: 0.4 \leftarrow x2, x3. \\ C_5 &=& x6: 0.3 \lor x7: 0.2 \leftarrow x2, x5. \end{array}$$

CH_1, CH_2	<i>x</i> 1, <i>x</i> 2	<i>x</i> 1, <i>x</i> 3	<i>x</i> 2, <i>x</i> 2	<i>x</i> 2, <i>x</i> 3
<i>x</i> 2 = 1	1.0	0.0	1.0	1.0
x2 = 0	0.0	1.0	0.0	0.0

<i>x</i> 2, <i>x</i> 5	t,t	t,f	f,t	f,f
$CH_5 = x6$	0.3	0.0	0.0	0.0
$CH_5 = x7$	0.2	0.0	0.0	0.0
$CH_5 = null$	0.5	1.0	1.0	1.0

Function Symbols

- What if function symbols are present?
- Infinite, countable Herbrand universe
- Infinite, countable Herbrand base
- Infinite, countable grounding of the program T
- Uncountable W_T
- Each world infinite, countable
- P(w) = 0
- Semantics not well-defined

Game of dice

```
on(0,1):1/3 ; on(0,2):1/3 ; on(0,3):1/3.
on(T,1):1/3 ; on(T,2):1/3 ; on(T,3):1/3 :-
T1 is T-1, T1>=0, on(T1,F), \+ on(T1,3).
```


Hidden Markov Models

Distribution Semantics with Function Symbols

- Semantics proposed for ICL and PRISM, applicable also to the other languages
- Definition of a probability measure μ over W_T
- μ assign a probability to every element of an algebra Ω of subsets of W_T, i.e. a set of subsets closed under union and complementation
- The algebra Ω is the set of sets of worlds identified by a finite set of finite composite choices

Knowledge-Based Model Construction

- The probabilistic logic theory is used directly as a template for generating an underlying complex graphical model [Breese et al., 1994].
- Languages: CLP(BN), Markov Logic

- Variables in a CLP(BN) program can be random
- Their values, parents and CPTs are defined with the program
- To answer a query with uninstantiated random variables, CLP(BN) builds a BN and performs inference
- The answer will be a probability distribution for the variables
- Probabilistic dependencies expressed by means of CLP constraints
- { Var = Function with p(Values, Dist) }
- { Var = Function with p(Values, Dist, Parents) }


```
course difficulty (Key, Dif) :-
{ Dif = difficulty(Key) with p([h,m,l],
[0.25, 0.50, 0.25]) \}.
student_intelligence(Key, Int) :-
{ Int = intelligence(Key) with p([h, m, l],
[0.5, 0.4, 0.1]) \}.
. . . .
registration(r0,c16,s0).
registration(r1,c10,s0).
registration(r2, c57, s0).
registration(r3,c22,s1).
```



```
registration grade (Key, Grade) :-
registration(Key, CKey, SKey),
course difficulty(CKey, Dif),
student_intelligence(SKey, Int),
{ Grade = grade (Key) with
p([a,b,c,d],
% h h m h l m h m m m l l h l m l l
[0.20, 0.70, 0.85, 0.10, 0.20, 0.50, 0.01, 0.05, 0.10,
 0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
 0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
 0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10 ],
 [Int,Dif]))
}.
```



```
?- [school 32].
   ?- registration_grade(r0,G).
p(G=a)=0.4115,
p(G=b)=0.356,
p(G=c)=0.16575,
p(G=d)=0.06675 ?
?- registration_grade(r0,G),
   student_intelligence(s0, h).
p(G=a) = 0.6125,
p(G=b)=0.305,
p(G=c)=0.0625,
p(G=d)=0.02 ?
```


Markov Networks

Undirected graphical models

• Each clique in the graph is associated with a potential ϕ_i

$$P(\mathbf{x}) = \frac{\prod_{i} \phi_{i}(\mathbf{x}_{i})}{Z}$$
$$Z = \sum_{\mathbf{x}} \prod_{i} \phi_{i}(\mathbf{x}_{i})$$

Intelligent	GoodMarks	$\phi_i(V,T)$
false	false	4.5
false	true	4.5
true	false	1.0
true	true	4.5

UNIVERSITÀ DEGLI STUDI DI FERRARA

Markov Networks

 If all the potential are strictly positive, we can use a log-linear model (where the f_is are features)

$$P(\mathbf{x}) = \frac{\exp(\sum_{i} w_{i} f_{i}(\mathbf{x}_{i}))}{Z}$$
$$Z = \sum_{\mathbf{x}} \exp(\sum_{i} w_{i} f_{i}(\mathbf{x}_{i})))$$
$$f_{i}(Intelligent, GoodMarks) = \begin{cases} 1 & \text{if } \neg \text{Intelligent} \lor \text{GoodMarks} \\ 0 & \text{otherwise} \end{cases}$$
$$w_{i} = 1.5$$

Markov Logic

- A Markov Logic Network (MLN) is a set of pairs (F, w) where F is a formula in first-order logic w is a real number
- Together with a set of constants, it defines a Markov network with
 - One node for each grounding of each predicate in the MLN
 - One feature for each grounding of each formula *F* in the MLN, with the corresponding weight *w*

Markov Logic Example

- 1.5 $\forall x \ Intelligent(x) \rightarrow GoodMarks(x)$
- $\forall x, y \; Friends(x, y) \rightarrow (Intelligent(x) \leftrightarrow Intelligent(y))$ 1.1
- Constants Anna (A) and Bob (B)

Markov Networks

Probability of an interpretation x

$$P(\mathbf{x}) = \frac{\exp(\sum_{i} w_{i} n_{i}(\mathbf{x}_{i}))}{Z}$$

- $n_i(\mathbf{x_i}) =$ number of true groundings of formula F_i in \mathbf{x}
- Typed variables and constants greatly reduce size of ground Markov net

References I

Breese, J. S., Goldman, R. P., and Wellman, M. P. (1994). Introduction to the special section on knowledge-based construction of probabilistic and decision models. *IEEE Transactions On Systems, Man and Cybernetics*, 24(11):1577–1579.

Dantsin, E. (1991).

Probabilistic logic programs and their semantics.

In *Russian Conference on Logic Programming*, volume 592 of *LNCS*, pages 152–164. Springer.

De Raedt, L., Kimmig, A., and Toivonen, H. (2007). Problog: A probabilistic prolog and its application in link discovery. In *International Joint Conference on Artificial Intelligence*, pages 2462–2467.

References II

Poole, D. (1993).

Logic programming, abduction and probability - a top-down anytime algorithm for estimating prior and posterior probabilities. *New Gener. Comput.*, 11(3):377–400.

Poole, D. (1997).

The Independent Choice Logic for modelling multiple agents under uncertainty.

Artif. Intell., 94(1-2):7-56.

Sato, T. (1995).

A statistical learning method for logic programs with distribution semantics.

In International Conference on Logic Programming, pages 715–729.

References III

Vennekens, J., Verbaeten, S., and Bruynooghe, M. (2004). Logic programs with annotated disjunctions. In *International Conference on Logic Programming*, volume 3131 of *LNCS*, pages 195–209. Springer.

