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Probabilistic Logic Languages

Combining Logic and Probability

Useful to model domains with complex and uncertain relationships
among entities
Many approaches proposed in the areas of Logic Programming,
Uncertainty in AI, Machine Learning, Databases
Logic Programming: Distribution Semantics [Sato, 1995]
A probabilistic logic program defines a probability distribution over
normal logic programs (called instances or possible worlds or
simply worlds)
The distribution is extended to a joint distribution over worlds and
queries
The probability of a query is obtained from this distribution
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Probabilistic Logic Languages

Probabilistic Logic Programming (PLP) Languages
under the Distribution Semantics

Probabilistic Logic Programs [Dantsin, 1991]
Probabilistic Horn Abduction [Poole, 1993], Independent Choice
Logic (ICL) [Poole, 1997]
PRISM [Sato, 1995]
Logic Programs with Annotated Disjunctions (LPADs)
[Vennekens et al., 2004]
ProbLog [De Raedt et al., 2007]
They differ in the way they define the distribution over logic
programs
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Probabilistic Logic Languages

Independent Choice Logic

sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ),hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).

disjoint([flu_sneezing(X ) : 0.7,null : 0.3]).
disjoint([hay_fever_sneezing(X ) : 0.8,null : 0.2]).

Distributions over facts by means of disjoint statements
null does not appear in the body of any rule
Worlds obtained by selecting one atom from every grounding of
each disjoint statement
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Probabilistic Logic Languages

Independent Choice Logic

4 worlds
sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ), hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).

flu_sneezing(bob). null.
hay_fever_sneezing(bob). hay_fever_sneezing(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8

flu_sneezing(bob). null.
null. null.
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

sneezing(bob) is true in 3 worlds
P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94
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Probabilistic Logic Languages

PRISM

sneezing(X )← flu(X ),msw(flu_sneezing(X ),1).
sneezing(X )← hay_fever(X ),msw(hay_fever_sneezing(X ),1).
flu(bob).
hay_fever(bob).

values(flu_sneezing(_X ), [1,0]).
values(hay_fever_sneezing(_X ), [1,0]).
: −set_sw(flu_sneezing(_X ), [0.7,0.3]).
: −set_sw(hay_fever_sneezing(_X ), [0.8,0.2]).

Distributions over msw facts (random switches)
Worlds obtained by selecting one value for every grounding of
each msw statement
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Probabilistic Logic Languages

Logic Programs with Annotated Disjunctions

sneezing(X ) : 0.7 ∨ null : 0.3← flu(X ).
sneezing(X ) : 0.8 ∨ null : 0.2← hay_fever(X ).
flu(bob).
hay_fever(bob).

Distributions over the head of rules
null does not appear in the body of any rule
Worlds obtained by selecting one atom from the head of every
grounding of each clause
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Probabilistic Logic Languages

ProbLog

sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ),hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).
0.7 :: flu_sneezing(X ).
0.8 :: hay_fever_sneezing(X ).

Distributions over facts
Worlds obtained by selecting or not every grounding of each
probabilistic fact

F. Riguzzi (DMI) Probabilistic Logic Languages 9 / 42



Distribution Semantics

Distribution Semantics

Case of no function symbols: finite Herbrand universe, finite set of
groundings of each disjoint statement/switch/clause
Atomic choice: selection of the i-th atom for grounding Cθ of
disjoint statement/switch/clause C

represented with the triple (C, θ, i)
a ProbLog fact p :: F is interpreted as F : p ∨ null : 1− p.

Example C1 = disjoint([flu_sneezing(X ) : 0.7,null : 0.3]),
(C1, {X/bob},1)

Composite choice κ: consistent set of atomic choices
κ = {(C1, {X/bob},1), (C1, {X/bob},2)} not consistent
The probability of composite choice κ is

P(κ) =
∏

(C,θ,i)∈κ

P0(C, i)
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Distribution Semantics

Distribution Semantics

Selection σ: a total composite choice (one atomic choice for every
grounding of each disjoint statement/clause)
σ = {(C1, {X/bob},1), (C2, {X/bob},1)}

C1 = disjoint([flu_sneezing(X ) : 0.7,null : 0.3]).
C2 = disjoint([hay_fever_sneezing(X ) : 0.8,null : 0.2]).

A selection σ identifies a logic program wσ called world
The probability of wσ is P(wσ) = P(σ) =

∏
(C,θ,i)∈σ P0(C, i)

Finite set of wrolds: WT = {w1, . . . ,wm}
P(w) distribution over worlds:

∑
w∈WT

P(w) = 1
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Distribution Semantics

Distribution Semantics

Herbrand base HT = {A1, . . . ,An}
P(aj |w) = 1 if Aj is true in w and 0 otherwise
P(aj) =

∑
w P(aj ,w) =

∑
w P(aj |w)P(w) =

∑
w |=Aj

P(w)
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Distribution Semantics

Example Program (ICL)

4 worlds
sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ), hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).

flu_sneezing(bob). null.
hay_fever_sneezing(bob). hay_fever_sneezing(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8

flu_sneezing(bob). null.
null. null.
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

sneezing(bob) is true in 3 worlds
P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94
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Distribution Semantics

Example Program (LPAD)

4 worlds
sneezing(bob)← flu(bob). null ← flu(bob).
sneezing(bob)← hay_fever(bob). sneezing(bob)← hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8

sneezing(bob)← flu(bob). null ← flu(bob).
null ← hay_fever(bob). null ← hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

sneezing(bob) is true in 3 worlds
P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94
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Distribution Semantics

Example Program (ProbLog)

4 worlds
sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ), hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).

flu_sneezing(bob).
hay_fever_sneezing(bob). hay_fever_sneezing(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8

flu_sneezing(bob).

P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

sneezing(bob) is true in 3 worlds
P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94
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Distribution Semantics

Examples

Throwing coins

heads(Coin):1/2 ; tails(Coin):1/2 :-
toss(Coin),\+biased(Coin).

heads(Coin):0.6 ; tails(Coin):0.4 :-
toss(Coin),biased(Coin).

fair(Coin):0.9 ; biased(Coin):0.1.
toss(coin).

Russian roulette with two guns

death:1/6 :- pull_trigger(left_gun).
death:1/6 :- pull_trigger(right_gun).
pull_trigger(left_gun).
pull_trigger(right_gun).
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Distribution Semantics

Examples

Mendel’s inheritance rules for pea plants

color(X,purple):-cg(X,_A,p).
color(X,white):-cg(X,1,w),cg(X,2,w).
cg(X,1,A):0.5 ; cg(X,1,B):0.5 :-

mother(Y,X),cg(Y,1,A),cg(Y,2,B).
cg(X,2,A):0.5 ; cg(X,2,B):0.5 :-
father(Y,X),cg(Y,1,A),cg(Y,2,B).

Probability of paths

path(X,X).
path(X,Y):-path(X,Z),edge(Z,Y).
edge(a,b):0.3.
edge(b,c):0.2.
edge(a,c):0.6.
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Distribution Semantics

Encoding Bayesian Networks

Burglary Earthquake

Alarm

burg t f
0.1 0.9

earthq t f
0.2 0.8

alarm t f
b=t,e=t 1.0 0.0
b=t,e=f 0.8 0.2
b=f,e=t 0.8 0.2
b=f,e=f 0.1 0.9

burg(t):0.1 ; burg(f):0.9.
earthq(t):0.2 ; earthq(f):0.8.
alarm(t):-burg(t),earthq(t).
alarm(t):0.8 ; alarm(f):0.2:-burg(t),earthq(f).
alarm(t):0.8 ; alarm(f):0.2:-burg(f),earthq(t).
alarm(t):0.1 ; alarm(f):0.9:-burg(f),earthq(f).
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Distribution Semantics

Try it yourself

Go to http://cplint.lamping.unife.it/
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Expressive Power

Expressive Power

All these languages have the same expressive power
LPADs have the most general syntax
There are transformations that can convert each one into the
others
ICL, PRISM: direct mapping
ICL, PRISM to LPAD: direct mapping
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Expressive Power

LPADs to ICL

Clause Ci with variables X

H1 : p1 ∨ . . . ∨ Hn : pn ← B.

is translated into

H1 ← B, choicei,1(X ).
...
Hn ← B, choicei,n(X ).

disjoint([choicei,1(X ) : p1, . . . , choicei,n(X ) : pn]).
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Expressive Power

LPADs to ProbLog

Clause Ci with variables X

H1 : p1 ∨ . . . ∨ Hn : pn ← B.

is translated into
H1 ← B, fi,1(X ).

H2 ← B,not(fi,1(X )), fi,2(X ).
...
Hn ← B,not(fi,1(X )), . . . ,not(fi,n−1(X )).

π1 :: fi,1(X ).
...
πn−1 :: fi,n−1(X ).

where π1 = p1, π2 = p2
1−π1

, π3 = p3
(1−π1)(1−π2)

, . . .

In general πi = pi∏i−1
j=1 (1−πj )
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Conversion to Bayesian Networks

Conversion to Bayesian Networks

PLP can be converted to Bayesian networks
Conversion for an LPAD T
For each atom A in HT a binary variable A
For each clause Ci in the grounding of T

H1 : p1 ∨ . . . ∨ Hn : pn ← B1, . . .Bm,¬C1, . . . ,¬Cl

a variable CHi with B1, . . . ,Bm,C1, . . . ,Cl as parents and H1, . . .,
Hn and null as values
The CPT of CHi is

. . . B1 = 1, . . . ,Bm = 1,C1 = 0, . . . ,Cl = 0 . . .
CHi = H1 0.0 p1 0.0

. . .
CHi = Hn 0.0 pn 0.0
CHi = null 1.0 1−

∑n
i=1 pi 1.0
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Conversion to Bayesian Networks

Conversion to Bayesian Networks

Each variable A corresponding to atom A has as parents all the
variables CHi of clauses Ci that have A in the head.
The CPT for A is:

at least one parent equal to A remaining columns
A = 1 1.0 0.0
A = 0 0.0 1.0
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Conversion to Bayesian Networks

Conversion to Bayesian Networks

C1 = x1 : 0.4 ∨ x2 : 0.6.
C2 = x2 : 0.1 ∨ x3 : 0.9.
C3 = x4 : 0.6 ∨ x5 : 0.4← x1.
C4 = x5 : 0.4← x2, x3.
C5 = x6 : 0.3 ∨ x7 : 0.2← x2, x5.

CH1,CH2 x1, x2 x1, x3 x2, x2 x2, x3
x2 = 1 1.0 0.0 1.0 1.0
x2 = 0 0.0 1.0 0.0 0.0

x2, x5 t,t t,f f,t f,f
CH5 = x6 0.3 0.0 0.0 0.0
CH5 = x7 0.2 0.0 0.0 0.0
CH5 = null 0.5 1.0 1.0 1.0
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Distribution Semantics with Function Symbols

Function Symbols

What if function symbols are present?
Infinite, countable Herbrand universe
Infinite, countable Herbrand base
Infinite, countable grounding of the program T
Uncountable WT

Each world infinite, countable
P(w) = 0
Semantics not well-defined
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Distribution Semantics with Function Symbols

Game of dice

on(0,1):1/3 ; on(0,2):1/3 ; on(0,3):1/3.
on(T,1):1/3 ; on(T,2):1/3 ; on(T,3):1/3 :-

T1 is T-1, T1>=0, on(T1,F), \+ on(T1,3).
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Distribution Semantics with Function Symbols

Hidden Markov Models

. . . X(t − 1) X(t) X(t + 1) . . .

Y (t − 1) Y (t) Y (t + 1)

hmm(S,O):-hmm(q1,[],S,O).
hmm(end,S,S,[]).
hmm(Q,S0,S,[L|O]):-
Q\= end,
next_state(Q,Q1,S0),
letter(Q,L,S0),
hmm(Q1,[Q|S0],S,O).

next_state(q1,q1,_S):1/3;next_state(q1,q2_,_S):1/3;
next_state(q1,end,_S):1/3.

next_state(q2,q1,_S):1/3;next_state(q2,q2,_S):1/3;
next_state(q2,end,_S):1/3.

letter(q1,a,_S):0.25;letter(q1,c,_S):0.25;
letter(q1,g,_S):0.25;letter(q1,t,_S):0.25.

letter(q2,a,_S):0.25;letter(q2,c,_S):0.25;
letter(q2,g,_S):0.25;letter(q2,t,_S):0.25.

F. Riguzzi (DMI) Probabilistic Logic Languages 28 / 42



Distribution Semantics with Function Symbols

Distribution Semantics with Function Symbols

Semantics proposed for ICL and PRISM, applicable also to the
other languages
Definition of a probability measure µ over WT

µ assign a probability to every element of an algebra Ω of subsets
of WT , i.e. a set of subsets closed under union and
complementation
The algebra Ω is the set of sets of worlds identified by a finite set
of finite composite choices
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Knowledge-Based Model Construction

Knowledge-Based Model Construction

The probabilistic logic theory is used directly as a template for
generating an underlying complex graphical model
[Breese et al., 1994].
Languages: CLP(BN), Markov Logic
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Knowledge-Based Model Construction

CLP(BN)

Variables in a CLP(BN) program can be random
Their values, parents and CPTs are defined with the program
To answer a query with uninstantiated random variables, CLP(BN)
builds a BN and performs inference
The answer will be a probability distribution for the variables
Probabilistic dependencies expressed by means of CLP
constraints

{ Var = Function with p(Values, Dist) }
{ Var = Function with p(Values, Dist, Parents) }
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Knowledge-Based Model Construction

CLP(BN)

....
course_difficulty(Key, Dif) :-
{ Dif = difficulty(Key) with p([h,m,l],
[0.25, 0.50, 0.25]) }.
student_intelligence(Key, Int) :-
{ Int = intelligence(Key) with p([h, m, l],
[0.5,0.4,0.1]) }.
....
registration(r0,c16,s0).
registration(r1,c10,s0).
registration(r2,c57,s0).
registration(r3,c22,s1).
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Knowledge-Based Model Construction

CLP(BN)

....
registration_grade(Key, Grade):-
registration(Key, CKey, SKey),
course_difficulty(CKey, Dif),
student_intelligence(SKey, Int),
{ Grade = grade(Key) with
p([a,b,c,d],

%h h h m h l m h m m m l l h l m l l
[0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10 ],
[Int,Dif]))

}.
.....
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Knowledge-Based Model Construction

CLP(BN)

?- [school_32].
?- registration_grade(r0,G).

p(G=a)=0.4115,
p(G=b)=0.356,
p(G=c)=0.16575,
p(G=d)=0.06675 ?
?- registration_grade(r0,G),

student_intelligence(s0,h).
p(G=a)=0.6125,
p(G=b)=0.305,
p(G=c)=0.0625,
p(G=d)=0.02 ?
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Knowledge-Based Model Construction

Markov Networks

Undirected graphical models

Intelligent GoodMarks

CouDifficulty TeachAbility

Each clique in the graph is associated with a potential φi

P(x) =

∏
i φi(xi)

Z

Z =
∑

x

∏
i

φi(xi)

Intelligent GoodMarks φi (V ,T )
false false 4.5
false true 4.5
true false 1.0
true true 4.5
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Knowledge-Based Model Construction

Markov Networks

Intelligent GoodMarks

CouDifficulty TeachAbility

If all the potential are strictly positive, we can use a log-linear
model (where the fis are features)

P(x) =
exp(

∑
i wi fi(xi))

Z

Z =
∑

x

exp(
∑

i

wi fi(xi)))

fi(Intelligent ,GoodMarks) =

{
1 if ¬Intelligent∨GoodMarks
0 otherwise

wi = 1.5
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Knowledge-Based Model Construction

Markov Logic

A Markov Logic Network (MLN) is a set of pairs (F ,w) where F is
a formula in first-order logic w is a real number
Together with a set of constants, it defines a Markov network with

One node for each grounding of each predicate in the MLN
One feature for each grounding of each formula F in the MLN, with
the corresponding weight w
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Knowledge-Based Model Construction

Markov Logic Example

1.5 ∀x Intelligent(x)→ GoodMarks(x)
1.1 ∀x , y Friends(x , y)→ (Intelligent(x)↔ Intelligent(y))

Constants Anna (A) and Bob (B)

Friends(A,B)

Friends(A,A) Friends(B,B)

Friends(B,A)

Int(A) Int(B)

GM(A) GM(B)
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Knowledge-Based Model Construction

Markov Networks

Probability of an interpretation x

P(x) =
exp(

∑
i wini(xi))

Z

ni(xi) = number of true groundings of formula Fi in x
Typed variables and constants greatly reduce size of ground
Markov net
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Knowledge-Based Model Construction
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Knowledge-Based Model Construction
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Knowledge-Based Model Construction
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