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Combining Logic and Probability

@ Useful to model domains with complex and uncertain relationships
among entities

@ Many approaches proposed in the areas of Logic Programming,
Uncertainty in Al, Machine Learning, Databases

@ Logic Programming: Distribution Semantics [Sato, 1995]

@ A probabilistic logic program defines a probability distribution over
normal logic programs (called instances or possible worlds or
simply worlds)

@ The distribution is extended to a joint distribution over worlds and
queries

@ The probability of a query is obtained from this distribution
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Probabilistic Logic Languages

Probabilistic Logic Programming (PLP) Languages
under the Distribution Semantics

@ Probabilistic Logic Programs [Dantsin, 1991]

@ Probabilistic Horn Abduction [Poole, 1993], Independent Choice
Logic (ICL) [Poole, 1997]

@ PRISM [Sato, 1995]

@ Logic Programs with Annotated Disjunctions (LPADs)
[Vennekens et al., 2004]

@ ProbLog [De Raedt et al., 2007]

@ They differ in the way they define the distribution over logic
programs
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Probabilistic Logic Languages

Independent Choice Logic

sneezing(X) < flu(X), flu_sneezing(X).

sneezing(X) < hay_fever(X), hay_fever_sneezing(X).
flu(bob).

hay_fever(bob).

disjoint([flu_sneezing(X) : 0.7, null : 0.3]).
disjoint([hay_fever_sneezing(X) : 0.8, null : 0.2]).

@ Distributions over facts by means of disjoint statements
@ null does not appear in the body of any rule

@ Worlds obtained by selecting one atom from every grounding of
each disjoint statement
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Probabilistic Logic Languages

Independent Choice Logic

@ 4 worlds
sneezing(X) < flu(X), flu_sneezing(X).
sneezing(X) + hay_fever(X), hay_fever_sneezing(X).
flu(bob).
hay_fever(bob).

flu_sneezing(bob). null.
hay_fever_sneezing(bob). hay_fever_sneezing(bob).
P(wy) =0.7 x 0.8 P(w;) =0.3x0.8
flu_sneezing(bob). null.

null. null.

P(ws) = 0.7 x 0.2 P(ws) = 0.3 x 0.2

@ sneezing(bob) is true in 3 worlds

@ P(sneezing(bob)) =0.7 x 0.8 +0.3 x0.8+0.7 x0.2=0.94
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PRISM

sneezing(X) <« flu(X), msw(flu_sneezing(X),1).

sneezing(X) < hay_fever(X), msw(hay_fever_sneezing(X),1).
flu(bob).

hay_fever(bob).

values(flu_sneezing(_X),[1,0]).
values(hay_fever_sneezing(_X), [1,0]).

: —set_sw(flu_sneezing(_X),[0.7,0.3]).

: —set_sw(hay_fever_sneezing(_X),[0.8,0.2]).

@ Distributions over msw facts (random switches)

@ Worlds obtained by selecting one value for every grounding of
T
each msw statement )
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Logic Programs with Annotated Disjunctions

sneezing(X) : 0.7 v null : 0.3 < flu(X).
sneezing(X) : 0.8 v null : 0.2 < hay_fever(X).
flu(bob).

hay_fever(bob).

@ Distributions over the head of rules
@ null does not appear in the body of any rule

@ Worlds obtained by selecting one atom from the head of every
grounding of each clause
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ProblLog

sneezing(X) « flu(X), flu_sneezing(X).

sneezing(X) < hay_fever(X), hay_fever_sneezing(X).
flu(bob).

hay_fever(bob).

0.7 :: flu_sneezing(X).

0.8 :: hay_fever_sneezing(X).

@ Distributions over facts

@ Worlds obtained by selecting or not every grounding of each
probabilistic fact
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Distribution Semantics

Distribution Semantics

@ Case of no function symbols: finite Herbrand universe, finite set of
groundings of each disjoint statement/switch/clause

@ Atomic choice: selection of the i-th atom for grounding C6 of
disjoint statement/switch/clause C

o represented with the triple (C, 9, i)
e aProblLogfactp:: Fisinterpretedas F:pV null : 1 — p.

@ Example C; = disjoint([flu_sneezing(X) : 0.7, null : 0.3]),
(C1,{X/bob},1)

@ Composite choice k: consistent set of atomic choices

o k= {(Cy,{X/bob},1),(Cy,{X/bob},2)} not consistent

@ The probability of composite choice « is

P(r)y= [ Po(C.i)

(C.0,i)ex S o
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Distribution Semantics

Distribution Semantics

@ Selection o: a total composite choice (one atomic choice for every
grounding of each disjoint statement/clause)

@ 0 ={(Cy,{X/bob},1),(Cs,{X/bob},1)}

C1 = disjoint([flu_sneezing(X) : 0.7, null : 0.3]).
C, = disjoint([hay_fever_sneezing(X) : 0.8, null : 0.2]).
@ A selection ¢ identifies a logic program w,, called world
@ The probability of w, is P(w,) = P(c) =[] (¢ ,i)es Po(C, 1)
@ Finite set of wrolds: Wr = {wy,..., wn}
@ P(w) distribution over worlds: >_ . P(w) = 1
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Distribution Semantics

Distribution Semantics

@ Herbrand base Hr = {A+,...,An}
@ P(ajlw) = 1if A is true in w and 0 otherwise

° P(g) =2 w P(a, w) =2 P(gIw)P(w) = 3,4 P(W)

w
@ o

| B

o |
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Example Program (ICL)

@ 4 worlds
sneezing(X) < flu(X), flu_sneezing(X).
sneezing(X) + hay_fever(X), hay_fever_sneezing(X).
flu(bob).
hay_fever(bob).

flu_sneezing(bob). null.
hay_fever_sneezing(bob). hay_fever_sneezing(bob).
P(wy) =0.7 x 0.8 P(w;) =0.3x0.8
flu_sneezing(bob). null.

null. null.

P(ws) = 0.7 x 0.2 P(ws) = 0.3 x 0.2

@ sneezing(bob) is true in 3 worlds

@ P(sneezing(bob)) =0.7 x 0.8 +0.3 x0.8+0.7 x0.2=0.94
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Example Program (LPAD)

@ 4 worlds
sneezing(bob) « flu(bob). null < flu(bob).
sneezing(bob) < hay_fever(bob). sneezing(bob) « hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(wi) = 0.7 x 0.8 P(wz) = 0.3 x 0.8
sneezing(bob) « flu(bob). null < flu(bob).
null + hay_fever(bob). null < hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(ws) = 0.7 x 0.2 P(ws) = 0.3 x 0.2

@ sneezing(bob) is true in 3 worlds
@ P(sneezing(bob)) =0.7 x 0.8+ 0.3 x 0.8+ 0.7 x 0.2 =0.94 N
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Example Program (ProbLog)

@ 4 worlds

sneezing(X) <« flu(X), flu_sneezing(X).

sneezing(X) « hay_fever(X), hay_fever_sneezing(X).
flu(bob).

hay_fever(bob).

flu_sneezing(bob).
hay_fever_sneezing(bob). hay_fever_sneezing(bob).
P(wi) =0.7 x 0.8 P(w2) =0.3x0.8

flu_sneezing(bob).

P(ws) = 0.7 x 0.2 P(ws) = 0.3 x 0.2

@ sneezing(bob) is true in 3 worlds

@ P(sneezing(bob)) =0.7 x 0.8+ 0.3 x0.8+0.7 x 0.2 = 0.94
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Distribution Semantics

Examples

Throwing coins

heads (Coin) :1/2 ; tails(Coin):1/2 :-
toss (Coin), \+biased (Coin) .

heads (Coin) :0.6 ; tails(Coin) :0.4 :-—
toss (Coin),biased (Coin) .

fair (Coin) :0.9 ; biased(Coin):0.1.

toss (coin) .

Russian roulette with two guns

death:1/6 :- pull_trigger (left_gun).
death:1/6 :—- pull_trigger (right_gun).
pull_trigger (left_gun).
pull_trigger (right_gun) .

T
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Distribution Semantics

Examples
Mendel’s inheritance rules for pea plants

color (X,purple) :—cg(X,_A,p) .

color (X,white) :—cg(X,1,w),cg(X,2,w) .

cg(X,1,A):0.5 ; cg(X,1,B):0.5 :—
mother (Y, X),cg(Y¥,1,A),cg(Y,2,B).

cg(X,2,A):0.5 ; cg(X,2,B):0.5 :—
father(Y,X),cg(¥,1,A),cg(Y¥,2,B).

Probability of paths

path
path

(X, X) .

(
edge (

(

(

X
X,Y):-path(X,Z2),edge(Z,Y) .
a,b):0.3.

c):0.2.

c):0.6.

edge (b,
edge (a,
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Distribution Semantics

Encoding Bayesian Networks

burg | t f

earthq | t f

alarm t f
b=t,e=t | 1.0 | 0.0
b=t,e=f | 0.8 | 0.2
b=fe=t | 0.8 | 0.2
b=fe=f | 0.1 | 0.9

burg(t) : Ol;burg( ):0.9.
)

earthqg(t ; earthg(f):0.8.

alarm(t ).—burg( ) ,earthqg(t) .

alarm(t 8 ; alarm(f):0.2: burg(t),earthq(f) .
alarm(t) :0.8 ; alarm(f) :0.2:-burg(f),earthg(t). -
alarm(t):0.1 ; alarm(f):0.9:-burg(f),earthqg(f). I
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Try it yourself

@ Gotohttp://cplint.lamping.unife.it/
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Expressive Power

Expressive Power

@ All these languages have the same expressive power
@ LPADs have the most general syntax

@ There are transformations that can convert each one into the
others

@ ICL, PRISM: direct mapping
@ ICL, PRISM to LPAD: direct mapping

o
450 i
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LPADs to ICL

@ Clause C; with variables X

is translated into

Hy «+ B, choice; 1(X).

Hp, « B, choice; n(X).

disjoint([choice; 1(X) : p1,. ..,
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LPADs to ProbLog

@ Clause C; with variables X
H1 1 P \/\/ann%B

is translated into

H1 — 37 fl,1(X) _ J—
Hy < B, not(f; 1(X)), f 2(X).

Hy < B, not(f; 1(X)), ..., not(f; o1 (X)).

Ty f,',1 ()_()

Tn—1 2 frn_1(X).

where 1 = py, Mo = 1_pz7r1,71'3 = (1_7T1't))?1_7r2),---

@ Ingeneral m; = ﬁ%
j=1 j
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Conversion to Bayesian Networks

Conversion to Bayesian Networks

@ PLP can be converted to Bayesian networks
@ Conversion for an LPAD T

@ For each atom Ain Hr a binary variable A

@ For each clause C; in the grounding of T

H; :p1\/...\/Hn:pn%Bh...Bm,—!Ch...,—!C/

a variable CH; with By, ..., By, Cy,...,C;as parents and Hy, ...,
H, and null as values
@ The CPT of CH; is

. 1B =1,....B,=1,C,=0,....C,=0] ...
CH,‘ = H, 0.0 P 0.0
CH =H, [ 00 on 0.0
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Conversion to Bayesian Networks

Conversion to Bayesian Networks

@ Each variable A corresponding to atom A has as parents all the
variables CH; of clauses C; that have A in the head.

@ The CPT for Ais:

at least one parent equal to A

remaining columns

1.0

0.0

> >
Il
ol —

0.0

1.0
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Conversion to Bayesian Networks

Ci = x1:04vx2:0.6.

C. = x2:01vx3:0.09.

C: = x4:06Vvx5:0.4+« x1.
Cs = x5:04+ x2,x8.

Cs = x6:03Vx7:0.2<« x2,x5.

CH;i,CH, | x1,x2 | x1,x3 | x2,x2 | x2,x3
x2 =1 1.0 0.0 1.0 1.0
x2=0 0.0 1.0 0.0 0.0

X2, x5 t,t t.f f,t ff
CHs=x6 | 03| 00| 0.0 0.0
CHs=x7 | 02| 0.0 | 0.0 | 0.0
CHs=null | 05|10 |10 | 1.0
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Distribution Semantics with Function Symbols

Function Symbols

What if function symbols are present?

Infinite, countable Herbrand universe

Infinite, countable Herbrand base

Infinite, countable grounding of the program T
Uncountable W7

Each world infinite, countable

P(w) =0

Semantics not well-defined
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Distribution Semantics with Function Symbols

Game of dice

on(0,1):1/3 ; on(0,2):1/3 ; on(0,3):1/3.
n(T,1):1/3 ; on(T,2):1/3 ; on(T,3):1/3 :-
Tl is T-1, T1>=0, on(T1,F), \+ on(T1,3).

F. Riguzzi (DMI) Probabilistic Logic Languages 27/42



Hidden Markov Models

hmm (S, 0) : ~hmm(gl, []1,S,0) .
hmm (end, S, S, [1) .
hmm (Q, SO, S, [L10]) : =
O\= end,
next_state (Q,0Q01,50),
letter (Q, L, S0),
hmm (Q1, [Q]S0],S,0) .
next_state(gl,qgl,_S):1/3;next_state(gl,q2_,_S):1/3;
next_state(gl,end,_S):1/3.
next_state(g2,q9ql,_S) :1/3;next_state(g2,92,_S) :1/3;
next_state(g2,end,_S):1/3.
letter(gl,a,_S):0.25;letter(gl,c,_S) :0.25;
letter(gl,g,_S):0.25;letter(gl,t,_S):0.25.
letter(g2,a,_S):0.25;letter(g2,c,_S) :0.25; -
letter(g2,g,_S):0.25;letter(g2,t,_S):0.25. J‘Ufm
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Distribution Semantics with Function Symbols

Distribution Semantics with Function Symbols

@ Semantics proposed for ICL and PRISM, applicable also to the
other languages

@ Definition of a probability measure p over Wr

@ 4 assign a probability to every element of an algebra 2 of subsets
of Wy, i.e. a set of subsets closed under union and
complementation

@ The algebra Q2 is the set of sets of worlds identified by a finite set
of finite composite choices
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Knowledge-Based Model Construction

Knowledge-Based Model Construction

@ The probabilistic logic theory is used directly as a template for
generating an underlying complex graphical model
[Breese et al., 1994].

@ Languages: CLP(BN), Markov Logic

w
@ o

| e

o i
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CLP(BN)

@ Variables in a CLP(BN) program can be random
@ Their values, parents and CPTs are defined with the program

@ To answer a query with uninstantiated random variables, CLP(BN)
builds a BN and performs inference

@ The answer will be a probability distribution for the variables

@ Probabilistic dependencies expressed by means of CLP
constraints

{ Var = Function with p(Values, Dist) }
{ Var = Function with p(Values, Dist, Parents) }

o
&
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CLP(BN)

course_difficulty (Key, Dif) :-

{ Dif = difficulty(Key) with p([h,m, 1],
[0.25, 0.50, 0.257]) 1.
student_intelligence (Key, Int) :-

{ Int = intelligence(Key) with p([h, m,
[0.5,0.4,0.1]) 1}.

r0,cl6,s0
rl,cl0,s0
r2,c57,s0
r3,c22,sl

registration
registration
registration
registration

)
) .
) -
)

— o~ o~ —~
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CLP(BN)

registration_grade (Key, Grade) :-—
registration (Key, CKey, SKey),
course_difficulty (CKey, Dif),
student_intelligence (SKey, Int),
{ Grade = grade (Key) with

p(la,b,c,d],
$h h hm hl mh mm ml 1 h 1 m 11
(0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10 1,
[Int,Dif]))
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CLP(BN)

?— [school_32].
?—- registration_grade(r0,G).

p(G=a)=0.4115,

p (G=b)=0.356,

p(G=c)=0.16575,

p(G=d)=0.06675 ?

?- registration_grade (r0,G),
student_intelligence(s0,h).

p(G=a)=0.6125,
p (G=b)=0.305,
P (G=c)=0.0625,
p(G=d)=0.02 2
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Knowledge-Based Model Construction

Markov Networks

@ Undirected graphical models

@ Each clique in the graph is associated with a potential ¢,

z=>" H¢i(xi)

F. Riguzzi (DMI)

P(X) Hi ¢Zi(xi)

Intelligent | GoodMarks | ¢;(V, T)
false false 4.5
false true 4.5

true false 1.0
true true 4.5
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Knowledge-Based Model Construction

Markov Networks

o If all the potential are strictly positive, we can use a log-linear
model (where the f;s are features)

P(X) _ eXp(ZiZWifi(xi))

z=>" exp(Z wifi(Xi)))

1 if =IntelligentvGoodMarks
0 otherwise

1 UNIVERS!
w;=1.5 {3)
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Markov Logic

@ A Markov Logic Network (MLN) is a set of pairs (F, w) where F is
a formula in first-order logic w is a real number
@ Together with a set of constants, it defines a Markov network with

@ One node for each grounding of each predicate in the MLN
@ One feature for each grounding of each formula F in the MLN, with
the corresponding weight w
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Knowledge-Based Model Construction

Markov Logic Example

1.5 Vx Intelligent(x) — GoodMarks(x)
1.1 Vx,y Friends(x, y) — (Intelligent(x) < Intelligent(y))

@ Constants Anna (A) and Bob (B)
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Knowledge-Based Model Construction

Markov Networks

@ Probability of an interpretation x

P(X) _ eXp(Zi W,'ni(Xi))
Z
@ n;(x;) = number of true groundings of formula F; in x

@ Typed variables and constants greatly reduce size of ground
Markov net

o
&
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Knowledge-Based Model Construction
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Knowledge-Based Model Construction
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