
Maven

1
Maven

Topics covered

 Introduction to Maven

 Maven for Dependency Management

 Maven Lifecycles and Plugins

 Hands on session

Maven 2

Introduction to Maven

Maven 3

What is Maven?

 A Java project management and integration build tool.

 Based on the concept of XML Project Object Model (POM).

 Maven can manage a project's build, testing, reporting,
documentation and releases from a central piece of information

 Licensed by Apache

 Stores libraries and plugins in a central repository

Maven 4

Maven’s Objectives

 Making the build process easy

 Providing a uniform build system

 Providing quality project information

▪ Maven provides plenty of useful project information that is in part

taken from your POM and in part generated from your project’s

sources

 Providing guidelines for best practices development

▪ Maven aims to gather current principles for best practices

development, and make it easy to guide a project in that direction.

For example, specification, execution, and reporting of unit tests are

part of the normal build cycle using Maven.

 Allowing transparent migration to new features

▪ Maven provides an easy way for the installation of new or updated

plugins

Maven 5

How does it work ?

 Build controlled via pom.xml project file

 POM = Project Object Model

 Uses standard build order, directories, plugins

 Identifies dependencies in the pom.xml

Maven 6

Maven for Dependency

Management

Maven 7

Maven repositories

 In Maven terminology, a repository is a directory where all the

project jars, library jar, plugins or any other project specific

artifacts are stored and can be used by Maven easily.

 Maven repository are of three types:

▪ local, Maven local repository is a folder location on your

machine. It gets created when you run any maven command

for the first time.

▪ central, Maven central repository is repository provided by

Maven community: https://search.maven.org/

▪ remote, developer's own custom repository containing

required libraries or other project jars

 Remote repository are defined within tag <repositories>

Maven 8

https://search.maven.org/

Handling Dependencies with Maven

 Unless your project is small, your project may need external Java

APIs or frameworks which are usually packaged in their own JAR

or WAR files. These JAR files are needed on the classpath when

you compile your project code.

 Dependency management is one of the features of Maven that is

best known.

 In the POM file you specify what external libraries your project

depends on, and which version, and then Maven downloads them

for you and puts them in your local Maven repository.

▪ These external libraries are called dependencies.

Maven 9

Transitive dependencies

 If any of these external libraries need other libraries, then these other

libraries are also downloaded into your local Maven repository.

 This feature allows you to avoid needing to discover and specify the

dependencies that your own dependencies require, and including them

automatically.

▪ E.g. If my project depends on A and A depends on B. I don’t have to

specify B in my POM file

 Nearest definition. The version used will be the closest one to your project

in the tree of dependencies.

▪ e.g. if dependencies for A, B, and C are defined as A -> B -> C -> D 2.0

and A -> E -> D 1.0, then D 1.0 will be used when building A because

the path from A to D through E is shorter.

▪ You could explicitly add a dependency to D 2.0 in A to force the use of

D 2.0

Maven 10

Scope of a Dependency

 Dependency scope is used to limit the transitivity of a dependency, and also to affect

the classpath used for various build tasks.

 There are 6 scopes available:

▪ compile, default scope. Compile dependencies are available in all classpaths of

a project. Those dependencies are propagated to dependent projects.

▪ provided, similar to compile, but indicates you expect the JDK or a container to

provide the dependency at runtime. This scope is only available on the

compilation and test classpath, and is not transitive. In other words, it means that

the JAR is added in the classpath by Maven during compilation, but at run time

there is already a JAR provided by the environment.

▪ runtime, indicates that the dependency is not required for compilation, but is for

execution. It is in the runtime and test classpaths, but not the compile classpath.

▪ test, indicates that the dependency is required only for the test compilation and

execution phases. This scope is not transitive.

▪ system

▪ import

Maven 11

Adding a Dependency

 The dependency must be enclosed by the element <dependency> and

added into the element <dependencies>

 We must provide

▪ groupId

▪ artifactId

▪ version

▪ type (default jar)

▪ scope (default compile)

Maven 12

Adding a Dependency - Example

 E.g.
<project>
...
<dependencies>
<dependency>
<groupId>group-c</groupId>
<artifactId>artifact-b</artifactId>
<version>1.0</version>
<type>war</type>
<scope>runtime</scope>

</dependency>
…
</project>

 We are adding the dependency group-c:artifact-b:1.0 with scope runtime

and the dependency is packaged as war.

Maven 13

Maven dependency mechanism (How

Maven finds the dependencies)

1. Search the dependency in Maven local repository (~/.m2/ in

Linux)

2. Search the dependency in Maven central repository

(https://search.maven.org)

3. Search the dependency among Maven remote repositories (if

defined in pom.xml)

Maven 14

Maven dependency mechanism

Maven 15

(https://search.maven.org/)

Maven dependency mechanism -

Example

 Aim: we need the log4j library

 We need to know the log4j Maven coordinates, for example

<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>

 We declare the log4j Maven coordinates into pom.xml file. We
enclose the coordinates within the <dependency> element and in
turn within the <dependencies> element

 When Maven is compiling or building, the log4j jar will be
downloaded automatically and put it into your Maven local repository
(if not already in the local repository)

 All managed by Maven

 The Maven coordinates can be found by visiting the Maven Central
Repository

Maven 16

http://search.maven.org/

Maven Lifecycles and Plugins

Maven 17

Maven Build Lifecycles

 Maven is based around the central concept of a build lifecycle. The
process for building and distributing a particular artifact (project) is
clearly defined.

 The POM file contains all the information for the build lifecycle

 The user have to learn a small set of commands

 There are three built-in lifecycles:

▪ clean, handles project cleaning

▪ default, handles the project building, testing and deployment

▪ site, handles the creation of project's site documentation.

 A Maven “build lifecycle” is defined by a list of build phases

▪ a build phase represents a stage in the lifecycle

 The lifecycle phases are executed sequentially

Maven 18

Clean Lifecycle

 pre-clean, execute processes needed prior to the actual project

cleaning

 clean, remove all files generated by the previous build

 post-clean, execute processes needed to finalize the project

cleaning

Maven 19

Default Lifecycle

 The defaule lifecycle has

 validate, validate the project is correct and all necessary
information is available

 compile, compile the source code of the project

 test, test the compiled source code using a suitable unit testing
framework.

 package, take the compiled code and package it in its
distributable format, such as a JAR.

 verify, run integration tests

 install, install the package into the local repository, for use as a
dependency in other projects locally

 deploy, copies the final package to the remote repository for
sharing with other developers and projects.

Maven 20

Site Lifecycle

 pre-site, execute processes needed prior to the actual project

site generation

 site, generate the project's site documentation

 post-site, execute processes needed to finalize the site

generation, and to prepare for site deployment

 site-deploy, deploy the generated site documentation to the

specified web server

Maven 21

Maven main commands

 To execute a phase on Maven you can use the command mvn

mvn <phase_name>

 It executes all the previous phases in a lifecycle, before executing

the one specified

 Example:

mvn install

▪ This command executes each default life cycle phase in

order (validate, compile, test, package, verify), before

executing install

Maven 22

Maven Plugins

 Maven is - at its heart - a plugin execution framework; all work is

done by plugins.

 Plugins are artifacts that provide goals to Maven.

 A plugin may have one or more goals.

▪ Each goal represents a capability of that plugin.

 There are two types of plugins:

▪ Build plugins will be executed during the build and they

should be configured in the <build> element from the POM.

▪ Reporting plugins will be executed during the site

generation and they should be configured in the <reporting>

element from the POM.

Maven 23

Maven Goals

 A goal is a “unit of work” in Maven. It is possible to execute goals

independently or a part of a larger chain of goals.

 A goal can be executed independently using the following syntax:

mvn [plugin-name]:[goal-name]

 You can add goals to lifecycle phases by configuring more Maven

plugins and adding them to a life cycle in your POM file.

▪ Plugins can contain information that indicates which lifecycle

phase to bind a goal to. Note that adding the plugin on its

own is not enough information - you need to specify which

goal should be executed.

▪ If the plugin does not specify the default life cycle it should

run, you must also specify the life cycle phase it should run.

Maven 24

Add Goals to Phases - Example

<build>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-javadoc-plugin</artifactId>
<version>2.10.4</version>
<executions>

<execution>
<phase>site</phase>
<goals>

<goal>javadoc</goal>
</goals>

</execution>
</executions>

</plugin>
…
</plugins>

</build>

Maven 25

References

 Maven official site

▪ https://maven.apache.org/

 Maven in 5 minutes

▪ https://maven.apache.org/guides/getting-started/maven-in-

five-minutes.html

 Getting started

▪ https://maven.apache.org/guides/getting-started/index.html

Maven 26

https://maven.apache.org/
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/index.html

Hands on Session

Maven 27

Install Maven

 Linux (Debian)

▪ Command: sudo apt-get install maven

 Linux (Fedora)

▪ Command: sudo yum install maven

 Mac

▪ https://maven.apache.org/install.html

 Windows

▪ https://maven.apache.org/install.html

Maven 28

https://maven.apache.org/install.html
https://maven.apache.org/install.html

What we are going to do (a)

 Create a maven project with NetBeans

 Install the JAR of our project into the Maven local repository

mvn install

 Add a dependecy (log4j)

 Produce the documentation of our project

mvn site

 Install again the JAR of our project into the Maven local repository

mvn install

 Using Git!

Maven 29

What we are going to do (b)

 Create a test (add JUnit dependency)

 Add the JaCoCo plugin:
<plugin>

<groupId>org.jacoco</groupId>
<artifactId>jacoco-maven-plugin</artifactId>
<version>0.7.9</version>
<executions>

<execution>
<goals>

<goal>prepare-agent</goal>
</goals>

</execution>
<execution>

<id>report</id>
<phase>test</phase>
<goals>

<goal>report</goal>
</goals>

</execution>
</executions>

</plugin>

Maven 30

