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10.3 Vibration Pickups

When a transducer is used in conjunction with another device to measure vibrations,
it is called a vibration pickup. The commonly used vibration pickups are known as
seismic instruments. A seismic instrument consists of a mass-spring-damper system
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mounted on the vibrating body, as shown in Fig. 10.9. Then the vibratory motion
is measured by finding the displacement of the mass relative to the base on which
it is mounted. - v

The instrument consists of a mass m, a spring k, and a damper c inside a cage,
which is fastened to the vibrating body. With this arrangement, the bottom ends of
the spring and the dashpot will have the same motion as the cage (which is to be

measured, y) and their vibration excites the suspended mass into motion. Then the

displacement of the mass relative to the cage, z = x — y, where x denotes the

vertical displacement of the suspended mass, can be measured if we attach a pointer
to the mass and a scale to the cage, as shown in Fig. 10.9.°
The vibrating body is assumed to have a harmonic motion:

y(t) = Y sin wf (10.13)
The equation of motion of the mass m can be written as
mi+c(x—y)+k(x—y)=0 (10.14)
By defining the relative displacement z as
z=Xx—Yy (10.15)
Eq. (10.14) can be written as
mZ + ¢z + kz = —my : (15().16)
Equations (10.13) and (10.16) lead to ’
m7i + ¢z + kz = mo?Y sin ot (10.17)

This equation is identical to Eq. (3.75); hence the steady-state solution is given by
2(f) = Z sin (wt — ¢) ‘ - (10.18)
3The output of the instrument shown in Fig. 10.9 is the relative mechanical motion of the mass, as

shown by the pointer and the graduated scale on the cage. For high speed operation and convenience,
the motion is often converted into an electrical signal by a transducer.
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where Z and ¢ are given by (see Eqgs. 3.77 and 3.69):

Z = Yo? = . 10.1
- [(k . mw2)2 + CZwZ]I/Z - [(1 _ r2)2 + (2[’,)2]1/2 ( - 9)
_ B B I A af _24r
¢ = tan <k — mcoz) tan (1 = rz) (10.20)
r= —5— (10.21)
and 3
c
{=- ‘ (10.22)

The variations of Z and ¢ with respect to r are shown in Figs. 10.10 and 10.11. As
will be seen later, the type of instrument is determined by the useful range of the
frequencies, indicated in Fig. 10.10.

10.3.1 A vibrometer or a seismometer is an instrument that measures the displacement of

Vibrometer- a vibrating body. It can be observed from Fig. 10.10 that Z/Y ~ 1 when wlw, =3
(range II). Thus the relative displacement between the mass and the base (sensed
‘by the transducer) is essentially the same as the displacement of the base. For an
exact analysis, we consider Eq. (10.19). We note that

) 2(8) = Y sin(ot — ¢) (10.23)
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A comparison of Eq. (10.23) with y(f) = Y sin wr shows that z(¥) gives directly the
motion y(¢) except for the phase lag ¢. This phase lag can be seen to be equal to
180° for { = 0. Thus the recorded displacement z(7) lags behind the displacement
being measured y(r) by time ' = ¢/ This time lag is not important if the base
displacement y(r) consists of a single harmonic component.

Since r = w/w, has to be large and the value of w is fixed, the natural frequency
@, = Vkim of the mass-spring-damper must be low. This means that the mass
must be large and the spring must have a low stiffness. This results in a bulky
instrument, which is not desirable in many applications. In practice, the vibrometer
may not have a large value of r and hence the value of Z may not be equal to Y
exactly. In such a_case, the true value of ¥ can be computed by using Eq. (10.19),

as indicated in the following example.

Amplitude by Vibrometer

A vibrometer having a natural frequency of 4 rad/sec and { = 0.2 is attached to a structure
that performs a harmonic motion. If the difference between the maximum and the minimum
recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its

frequency is 40 rad/sec. :

Given: Vibrometer with w, = 4 rad]sec, {=02,Z = 4 mm, and o = 40 rad/sec.:
Find: Amplitude of the vibrating structure (V).
Approach: Use Eq. (10.19)."

Solution: The amplitude of the recorded motion Z is 4 mm. For { = 02, @ = 40.0

radfsec, and @, = 4 rad/sec, r = 10.0, and Eq. (10.19) gives

~ ¥(10)? _
2= [T 1097 ¥ (2002)(10))7 7 = 1-0093Y

Thus the amplitude of vibration of the structure is ¥ = Z/1.0093 = 3.9631 mm.
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10.3.2 An accelerometer is an instrument that measures the acceleration of a vibrating
jccelerometer body (see Fig. 10.12). Accelerometers are widely used for vibration measurements
[10.7] and also to record earthquakes. From the accelerometer record, the velocity
and displacements are obtained by integration. Differentiation of Eq. (10.13) gives

1

—z(wE = (1= 72y + (2[r)2]”2{ —Yw?sin (wt — ¢)}  (10.25)

This shows that if

1

[(1 - 722 + (20r)2]72 =1 (10.26)

Eq. (10.25) becomes
—z2()wk = —Yo’sin(wt — ¢) (10.27)

By comparing Eq. (10.27) with j(f) = — Y®? sin o, we find that the term z(f) w?
gives the acceleration of the base y, except for the phase lag ¢. Thus the instrument
can be made to record (give) directly the value of y = ~z(t)a);2,‘ The tune by which
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the record lags the acceleration is given by ¢ = ¢/w. If y consists of a single
harmonic component, the time lag will not be of importance.

The value of the expression on the left-hand side of Eq. (10.26) is shown plotted
in Fig. 10.13. It can be seen that the left-hand side of Eq. (10.26) lies between 0.96
and 1.04 for 0 < r < 0.6 if the value of { lies between 0.65 and 0.7. Since r is
small, the natural frequency of the instrument has to be large compared to the
frequency of vibration to be measured. From the relation w, = Vik/m, we find that
the mass needs to be small and the spring needs to have a large value of k G.e.,
short spring), so the instrument will be small in size. Due to their small size and
high sensitivity, accelerometers are preferred in vibration measurements. In practice,
Eq. (10.26) may not be satisfied exactly; in such cases the quantity

N 1
[(1 = )2 + (24r)?]'7
can be used to find the correct value of the acceleration measured as illustrated in
the following example. '

Design of an Accelerometer

An accelerometer has a suspended mass of 0.01 kg with a damped natural frequency of
vibration of 150 Hz. When mounted on an engine undergoing an acceleration of 1 g at an
operating speed of 6000 rpm, the acceleration is recorded as S.5 m/s2 by the instrument.
Find the damping constant and the spring stiffness of the accelerometer.

Given: Accelerometer of mass = 0.01 kg, damped natural frequency = 150 Hz, and recorded
acceleration = 9.5 m/s?. Engine with operating speed = 6000 rpm, acceleration = 1 g =
9.81 m/s?.

Find: Damping constant (c) and spring stiffness (k) of the accelerometer.

Approach: Use the equation for the ratio of recorded and true acceleration in conjunction
with the equation for the damped natural frequency. , ,

Solution: The ratio of measured to true accelerations is given by

1 Measured value 9.5 a
= = = . . _1
[(1 = 22 + (20r)2)12 True value 9.81 0.9684 (E )

which can be written as o
[(1= r2)2 + (24r)?] = (1/0.9684) = 1.0663 (E.2)
The operating speed of the engine gives

w = gg(-)g—(()—zﬂ = 628.32 rad/sec
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10.3.3
Velometer

The damped natural frequency of vibration of the acceierometer is

wy = V1 — % w, = 150(27) = 942.48 rad/sec

Thus
w0 w _ r _ 628.32
©wi V1 - Pw, V1- 94248
Equation (E.3) gives
r=06667V1 — 22 or r?=0.4444(1 — *)
Substitution of Eq. (E.4) into (E.2) leads to a quadratic equation in {2 as
1.5801¢4 — 2.27142% + 0.7576 = 0

= 0.6667

The solution of Eq. (E.5) gives
% = 0.5260, 0.9115

or

-
-

/= 0.7253, 0.9547

(E.3)

(E.4)

(E.5)

By choosing ¢ = 0.7253 arbitrarily, the undamped natural frequency of the accelerometer

can be found as
'w _ ws 94248
VI -2 V1072532
Since w, = Viim, Weyhave
k = mw? = (0.01)(1368.8889)> = 18738.5628 N/m

= 1368.8889 rad/sec

Damping constant can be determined from

¢ = 2mw,{ = 2(0.01)(1368.8889)(0.7253) = 19.8571 N-s/m

A velometer measures the velocity of a vibrating body Equation (10.13) gives the

velocity of the vibrating body:
' y(t) = wY cos wt

and Eq. (10.18) gives
r’wY

(1) = [(1 — I‘2)2 + (2{,.)2]1/2 cos(wt — ¢)

r?

RV

then
(1) = wY cos(wt — ¢)

(10,28)

(10.29)

(10.30)

(10.31)
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A comparison of Eqs. (10.28) and (10.31) shows that, except for the phase difference
¢, (1) gives directly y(f), provided that Eq. (10.30) holds true. In order to satisfy
Eq. (10.30), r must be very large. In case Eq. (10.30) is not satisfied, then the
velocity of the vibrating body can be computed using Eq. (10.29).

Design of a Velometer

Design a velometer if the maximum error is to be limited to 1 percent of the true velocity.
The natural frequency of the velometer is tobe 80 Hz and the suspended mass is to be 0.05

kg.

Given: Velometer with w, = 80 Hz, m = 0.05 kg, and accuracy = =1 percent.

Find: k and c of velometer.

-

Approach: Use expression for maximum error.

Solution: The ratio (R) of the recorded and the true velocities is given by Eq. (10.29):

2 .
R = [y 1 @i Re;fjgefexvoc;ﬁ;“y (E-D
The maximum of (E.1) occurs when (see Eq. (3.84))
rerte = (E.2)
Substitution of Eq. (E.2) into (E.1) gives
(=)
\1 — 27 e

L () | ooeli) |

which can be simplified as

R E3)

1
For an error of 1 percent, R = 1.01 or 0.99, and Eq. (E.3) leads to
2 — 2+ 0.245075 = 0 ' (E.4)
4= 2+ 0255075 = 0 (E.5)

Equation (E.5) gives imaginary roots and Eq. (E.4) gives
' 2 = 0.570178, 0.429821
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or

{ = 0.755101, 0.655607

We choose the value ¢ = 0.755101 arbitrarily. The spring stiffness can be found as

k = mw? = 0.05(502.656)* = 12633.1527 N/m

since

v, = 80(27) = 502.656 rad/sec

The damping constant can be determined from

¢ = 2{w,m = 2(0.755101)(502.656)(0.05) = 37.9556 N-s/m =

-

As shown by Eq. (10.18), all vibration-measuring instruments exhibit phase lag.
Thus the response or output of the instrument lags behind the motion or input it
measures. The time lag is given by the phase angle divided by the frequency .
The time lag is not important if we measure a single harmonic component. But,
occasionally, the vibration to be recorded is not harmonic but consists of the sum
of two or more harmonic components. In such a case, the recorded graph may not give
an accurate picture of the vibration because different harmonics may be amplified by
different amounts and their phase shifts also may be different. The distortion in the
wave form of the recorded signal is called the phase distortion or phase-shift error.
To illustrate the nature of the phase-shift error, we consider a vibration signal of

the form’shown in Fig. 10.14(a) [10.10]:
y(#) = a;sin wt + azsin 3wt (10.32)

Let the phase shift be 90° for the first harmonic and 180° for the third harmonic of

Eq (10.32). The corresponding time lags are given by #; = 6/ = 90%w and

= G/Gw) = 180°(3w). The output signal is shown in Fig. 10.14(b). It can be

scen that the output signal is qulte dlfferent from the input signal due to phase
distortion.

As a general case, let the complex wave being-measured be given by the sum

of several harmonics as

Y(£) = ajsin wr + a,sin 2wt + + - - (10.33)

..If the displacement is measured using a vibrometer, its response to each component

of the series is given by an equatlon smnlar to Eq. (10 18) so that the output of the
vibrometer becomes

Coz(t) = agsin(wt — @) + axsin(Qwt — @) + ¢ - - (10.34)
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where

25(15?)
” i=1,2, ... (10.35)

tan ¢ = ————, ] =

w >
- ()
Since w/w, is large for this instrument, we can find from Fig. 10.11 that ¢; =
j = 1,2, .. .and Eq. (10.34) becomes . k
2(1) = —[a;sin wt + a,sin 20t + -+ -] = —y(f) (10.36)

Thus the output record will be simply opposite to the motion being measured. This

is unimportant and can easily be corrected.
By using a similar reasoning, we can show, in the case of a velometer, that

() = —y() - (10.37)

for an input signal consisting of several harmonics. Next we consider the phase
distortion for an accelerometer. Let the acceleration curve to be measured be ex-

pressed, using Eq. (10.33), as
j(t) = —a;0’sin ot — ay(2w)*sin2et — - - - (10.38)
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The response or output of the instrument to each component can be found as in Eq.
(10.34), and so

(1) = —a,0%in(wt — #1) — ay(2w)*sin( 2wt — @) — - - - (10.39)

where the phase lags ¢; are different for different components of the series in
Eq. 10.39. Since the phase lag ¢ varies almost linearly from 0° at 7 = 0 to 90° at
r = 1for{ = 0.7 (see Fig. 10.11), we can express ¢ as

b= ar = awﬁ = Bw (10.40)

where a and 8 = a/w, are constants. The time lag is given by

=22 Be_ g (10.41)

w @

This shows that the time lag of the accelerometer is independent of the frequency
for any component, provided that the frequency lies in the range 0 < r < 1. Since
each component of the signal has the same time delay or phase lag, we have, from
Eq. (10.39),

- w?%%(t) = —a,w%sin( wt — wf) — ay(2w)? sin(2wt — 20B) — - - -

= —a,0’s8in ©7 — a,(2w)? sin 2wT — - - - (10.42)

where 7 = t — 8. Note that Eq. (10.42) assumes that 0 < r < 1—that is, even the
highest frequency involved, nw, is less than w,. This may not be true in practice.
Fortunately, no significant phase distortion occurs in the output-signal even when
some of the higher order frequencies are larger than w,. The reason is that, generally,
only the first few .components are important to approximate even a complex wave
form; the amplitudes of the higher harmonics are small and contribute very little
to the total wave form. Thus the output-tecord of the accelerometer represents a
reasonably true acceleration being measured [10.7, 10.11].






