Formulario di Progettazione meccanica

Versione 3 – A.A. 2007/08

La presente dispensa fornisce alcune delle formule ed equazioni disponibili per la consultazione durante la prova scritta del corso di Progettazione Meccanica 1 e 2, del 1° e s2° anno di Laurea Specialistica in Ingegneria Meccanica ed Ingegneria dei Materiali dell'Università di Ferrara. *Indice*

STATI TENSO-DEFORMATIVI TRIDIMENSIONALI	2
STATO TENSIONALE: NOTAZIONE TENSORIALE	2
TENSIONI PRINCIPALI E LORO DIREZIONI	2
STATO TENSIONALE: CERCHI DI MOHR	3
DEFORMAZIONI LINEARI ELASTICHE	3
FATICA AD AMPIEZZA VARIABILE	4
FATICA MULTIASSIALE	6
CALCOLO DELLE GRANDEZZE INGEGNERISTICHE NELLA FATICA MULTIASSIALE	6
AMPIEZZA E VALORE MEDIO DELLA TENSIONE TANGENZIALE SU UN PIANO GENERICO.	6
AMPIEZZA E VALORE MEDIO DELLA TENSIONE NORMALE AL PIANO	9
CALCOLO DELLE COMPONENTI IN SOLLECITAZIONI BIASSIALI σ_x - τ_{xy}	9
TENSIONE IDROSTATICA	9
SECONDO INVARIANTE DEL TENSORE DEVIATORICO	10
CRITERI DI RESISTENZA A FATICA MULTIASSIALE	11
IL CRITERIO DI CROSSLAND	12
IL CRITERIO DI MATAKE	12
IL CRITERIO DI MCDIARMID	13
MECCANICA DELLA FRATTURA	14
MECCANICA DELLA FRATTURA: VERIFICHE STATICHE	15
MECCANICA DELLA FRATTURA: VERIFICHE A FATICA	16
ELEMENTI DI PLASTICITA	17
SCHEMATIZZAZIONE DEL MATERIALE	17
FLESSIONE DELLE TRAVI IN CAMPO PLASTICO	17
EFFETTO DI INTAGLIO IN CAMPO PLASTICO	17
AUTOFRETTAGGIO	18
FATICA OLIGO-CICLICA	, 19
COMPORTAMENTO CICLICO DEL MATERIALE	19
La durata del materiale:	19
INSTABILITÀ DELL'EQUILIBRIO	20
Instabilità giobale degli elementi snel li	20
INSTABILITÀ LOCALE DELLE PARETI SOTTI I	21
RESISTENZA DI STRUTTURE IN PARETE SOTTILE	22
APPENDICI	23

Stati tenso-deformativi tridimensionali

Stato tensionale: notazione tensoriale

Tetraedro di Cauchy.

Tensioni principali e loro direzioni

Le tensioni principale sono gli autovalori del tensore delle tensioni

$$\begin{bmatrix} (\sigma_{xx} - \sigma_n) & \sigma_{xy} & \sigma_{xz} \\ \sigma_{xy} & (\sigma_{yy} - \sigma_n) & \sigma_{yz} \\ \sigma_{xz} & \sigma_{yz} & (\sigma_{zz} - \sigma_n) \end{bmatrix} \begin{pmatrix} n_x \\ n_y \\ n_z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Questo sistema ammette soluzione solo se il $\stackrel{\checkmark}{x}$ determinante della prima matrice a primo membro si annulla, ovvero se è soddisfatta:

$$\sigma_n^3 - I_{1\sigma}\sigma_n^2 - I_{2\sigma}\sigma_n - I_{3\sigma} = 0$$

quando siano definiti il primo, secondo e terzo invariante di tensione:

$$I_{1\sigma} = \sigma_{xx} + \sigma_{yy} + \sigma_{zz}$$

$$I_{2\sigma} = \sigma_{xy}^{2} + \sigma_{xz}^{2} + \sigma_{yz}^{2} - (\sigma_{xx}\sigma_{yy} + \sigma_{xx}\sigma_{zz} + \sigma_{yy}\sigma_{zz})$$

$$I_{3\sigma} = det[\sigma]$$

Stato tensionale: cerchi di Mohr

Sia assegnato un punto P, un piano di normale n passante per tale punto e il vettore tensione t_n, vettore che può essere decomposto normalmente e tangenzialmente al piano in analisi ottenendo, rispettivamente, la tensione normale σ_n tensione tangenziale τ_n . La rappresentazione dello stato tensionale generico sul piano di Mohr è data dai tre circoli rappresentati in figura.

Deformazioni lineari elastiche

Note le costanti E e v è possibile introdurre una ulteriore costante, di notevole utilità, detta prima costante di Lamè:

$$G = \frac{E}{2(1+\nu)}$$

Definizione delle deformazioni e Leggi generalizzate di Hooke:

Dalle precedenti è possibile ricavare anche le leggi inverse generalizzate di Hooke:

$$\begin{aligned} \sigma_{xx} &= 2G \left[h\epsilon_{xx} + \nu * (\epsilon_{yy} + \epsilon_{zz}) \right] & \sigma_{xy} = G \epsilon_{xy} \\ \sigma_{yy} &= 2G \left[h\epsilon_{yy} + \nu * (\epsilon_{xx} + \epsilon_{zz}) \right] & \sigma_{xz} = G \epsilon_{xz} \\ \sigma_{zz} &= 2G \left[h\epsilon_{zz} + \nu * (\epsilon_{xx} + \epsilon_{yy}) \right] & \sigma_{zz} = G \epsilon_{yz} \end{aligned}$$

quando vengano definite le costanti:

$$h = \frac{1 - v}{1 - 2v}; v^* = \frac{v}{1 - 2v}.$$

Fatica ad ampiezza variabile

Metodo di conteggio dei cicli

Metodologie per individuare e contare cicli affaticanti in una storia di carico generica individuata esclusivamente dai punti di inversione del carico:

Esempio di storia di carico

Si introduce il metodo di conteggio del "serbatoio", ossia la metodologia più semplice applicabile a storie di carico brevi:

1) si ipotizza la storia generica come ciclicamente ripetuta e la si traccia partendo dal massimo assoluto:

Storia ciclica riordinata

- 2) Considerare la storia di carico come il profilo di un serbatoio riempito ed estrarre l'acqua dal minore dei minimi relativi contenenti acqua; ad ogni estrazione si conta un ciclo di range pari al "salto idrico".
- 3) I cicli contati vengono quindi numerati in ordine decrescente di range di sollecitazione.

Cicli contati

<u>Verifica in presenza di ampiezze variabili</u> Danno del blocco i-esimo: $D_L = \frac{n_i}{N_i}$;

danno totale:
$$D = \sum D_i = \sum \frac{n_i}{N_i} = 1$$

Storia equivalente:

Dalle equazioni precedenti si ricava:

$$\sigma_{a,eq} = \cos t$$
; $n_{eq} = \sum n_i \cdot \left(\frac{\sigma_{ai}}{\sigma_{aeq}}\right)^k$;

i) se si assume $\sigma_{a,eq} = \sigma_{a,1}$ si determina il num. di cicli equivalente $n_{eq} = \sum n_i \left(\frac{\sigma_{a,i}}{\sigma_{a,1}}\right)^k$

ii) se si assume $n_{eq} = \sum n_i$ si determina l'ampiezza equivalente: $\sigma_{a,eq} = \sqrt[k]{\frac{\sum n_i \cdot \sigma_{a,i}^k}{n}}$

Dove la curva di resistenza è schematizzata come in figura.

L'equazione del tratto a vita a termine:

$$\sigma_a^k \cdot N = \cos t = \sigma_A^k \cdot N_A$$

Fatica Multiassiale

Calcolo delle grandezze ingegneristiche nella fatica multiassiale

Tensore delle tensioni variabile nel tempo:

$$\begin{bmatrix} \sigma(t) \end{bmatrix} = \begin{bmatrix} \sigma_x(t) & \tau_{xy}(t) & \tau_{xz}(t) \\ \tau_{xy}(t) & \sigma_y(t) & \tau_{yz}(t) \\ \tau_{xz}(t) & \tau_{yz}(t) & \sigma_z(t) \end{bmatrix}$$

Le componenti di n possono essere espresse, tramite gli angoli $\phi \in \theta$:

$$\{n\} = \begin{cases} n_{x} \\ n_{y} \\ n_{z} \end{cases} = \begin{cases} \sin(\theta)\cos(\phi) \\ \sin(\theta)\sin(\phi) \\ \cos(\theta) \end{cases}$$

Sulla giacitura Δ possono essere **A** individuate due direzioni ortogonali che permettono di definire il sistema di riferimento di piano Oabn:

$$\{a\} = \begin{cases} a_x \\ a_y \\ a_z \end{cases} = \begin{cases} -\sin(\phi) \\ \cos(\phi) \\ 0 \end{cases}$$

vettore tensione totale t: $t(t) \equiv [t_x(t), t_v(t), t_z(t)],$ $\{b\} = \begin{cases} b_x \\ b_y \\ b_z \end{cases} = \begin{cases} -\cos(\theta)\cos(\phi) \\ -\cos(\theta)\sin(\phi) \\ \sin(\theta) \end{cases}$

$$\begin{split} t_x(t) &= \sigma_x(t) \cdot n_x + \tau_{xy}(t) \cdot n_y + \tau_{xz}(t) \cdot n_z \\ t_y(t) &= \tau_{xy}(t) \cdot n_x + \sigma_y(t) \cdot n_y + \tau_{yz}(t) \cdot n_z \\ t_z(t) &= \tau_{xz}(t) \cdot n_x + \tau_{yz}(t) \cdot n_y + \sigma_z(t) \cdot n_z \end{split}$$

tensione normale e tangenziale al piano Δ in un generico istante, infatti:

$$\begin{split} \sigma_n(t) &= t_x(t) \cdot n_x + t_y(t) \cdot n_y + t_z(t) \cdot n_z \\ \tau_{na}(t) &= t_x(t) \cdot a_x + t_y(t) \cdot a_y + t_z(t) \cdot a_z \\ \tau_{nb}(t) &= t_x(t) \cdot b_x + t_y(t) \cdot b_y + t_z(t) \cdot b_z \end{split}$$

Risultante della tensione tangenziale:

$$\tau(t) = \sqrt{\tau_{na}^{2}(t) + \tau_{nb}^{2}(t)}.$$

Ampiezza e valore medio della tensione tangenziale su un piano generico

Su di un piano generico il vettore tensione tangenziale variabile nel tempo, in un periodo T, descrive una curva (vedi figura) il problema è la definizione, su tale curva, di ampiezza e valor medio della tensione tangenziale.

<u>Il metodo della corda</u>

Al variare di due istanti generici $t_1 e t_2 \in T$, si determina la corda massima:

$$\tau_{a} = \frac{1}{2} \max_{t_{1} \in T} \left[\max_{t_{2} \in T} \left| \tau(t_{1}) - \tau(t_{2}) \right| \right]$$

<u>Il metodo della più piccola</u> <u>ipersfera</u>

Al variare di due istanti generici t_1 e $t_2 \in T$ e si determinino i corrispondenti punti P_1 e P_2 :

$$\begin{split} P_1 &\equiv \left[\tau_{na}(t_1), \, \tau_{nb}(t_1)\right] \, \text{con} \, t_1 \in T \\ P_2 &\equiv \left[\tau_{na}(t_2), \, \tau_{nb}(t_2)\right] \, \text{con} \, t_2 \in T \, e \, t_2 \\ \neq t_1 \end{split}$$

Si calcolano le n_D circonferenze aventi diametro pari alla distanza tra i due punti in esame.

Pertanto le n_D circonferenze hanno

raggio R e centro $C \equiv (C_a, C_b)$ pari rispettivamente a:

Si costruiscono ora tutte le n_T circonferenze, passanti per tre punti, P₁, P₂ e P₃: P₁ = [$\tau_{na}(t_1), \tau_{nb}(t_1)$] con t₁ \in T P₂ = [$\tau_{na}(t_2), \tau_{nb}(t_2)$] con t₂ \in T e t₂ \neq t₁ P₃ = [$\tau_{na}(t_3), \tau_{nb}(t_3)$] con t₃ \in T e t₃ \neq t₂ \neq t₁

Per determinare il raggio R e il centro $C \equiv (C_a, C_b)$ di ciascuna delle n_T circonferenze si deve risolvere un sistema di tre equazioni in tre incognite:

Metodo della Corda

$$\begin{cases} R^{2} = [C_{a} - \tau_{na}(t_{1})]^{2} - [C_{b} - \tau_{nb}(t_{1})]^{2} \\ R^{2} = [C_{a} - \tau_{na}(t_{2})]^{2} - [C_{b} - \tau_{nb}(t_{2})]^{2} \\ R^{2} = [C_{a} - \tau_{na}(t_{3})]^{2} - [C_{b} - \tau_{nb}(t_{3})]^{2} \end{cases}$$

Tra le n_D+n_T circonferenze individuate si devono scartare tutte quelle che non contengono interamente la curva Ψ , ovvero che non contengono tutti i k vertici della pligonale con cui la curva Ψ stessa è stata approssimata.

Si è così costruita una famiglia di circonferenze contenenti tutte la curva Ψ e tra queste si deve estrarre quella avente raggio più piccolo; se tale circonferenza ha raggio R_{min} e centro $C_{min} \equiv (C_{a,min}, C_{b,min})$ allora l'ampiezza e il valore medio della tensione tangenziale agente su un piano sono:

$$\tau_a = R_{min} \qquad \qquad \tau_m = \sqrt{C_{a,min}^2 + C_{b,min}^2}$$

<u>Metodo della massima varianza</u>

Si consideri uno stato piano con variazione sinusoidale delle componenti normali e tangenziali:

$$\sigma_{x}(t) = \sigma_{a} \sin(\omega t)$$

$$\tau_{xy}(t) = \tau_{a} \sin(\omega t + \delta)$$

Il piano di massima variazione della tensione tangenziale si ha per $9=90^{\circ}$ ed il valore di φ può essere determinato analizzato la varianza della tensione tangenziale risolta e si determina che la direzione critica si ha per valori in accordo con la seguente tabella:

φ	$\delta \neq \pi/2$	$\delta = \pi/2$	
$(\sigma_a - 2 \tau_a) < 0$	$\phi_0 + i\frac{\pi}{2}$	$i\frac{\pi}{2}$	
$(\sigma_a - 2 \tau_a) = 0$	$\frac{3\pi}{8} + i\frac{\pi}{2}$	ogni φ	
$(\sigma_a - 2\tau_a) > 0$	$\left(\phi_0+\frac{\pi}{4}\right)+i\frac{\pi}{2}$	$\frac{\pi}{4} + i\frac{\pi}{2}$	
Dove $\varphi_0 = -\frac{1}{4} \arctan\left(\frac{4\sigma_a \tau_a \cos \delta}{\sigma_a^2 - 4\tau_a^2}\right) e \ i = 0, 1, 2,$			

Per tali valori la varianza della tensione tangenziale vale:

$$\operatorname{Var}(\tau_{m}(t)) = \frac{1}{2} \left[\frac{\sin(2\phi)^{2}}{4} \sigma_{a}^{2} + \cos(2\phi)^{2} \tau_{a}^{2} + \sin(2\phi) \cos(2\phi) \sigma_{a} \tau_{a} \cos(\delta) \right]$$
$$= \frac{1}{16} \left[\left[1 - \cos(4\phi) \right] \sigma_{a}^{2} + 4 \left[1 + \cos(4\phi) \right] \tau_{a}^{2} + 4 \sin(4\phi) \sigma_{a} \tau_{a} \cos(\delta) \right]$$
De qui il celeste dell'ampiezzo:

Da cui il calcolo dell'ampiezza:

$$\tau_{\rm a} = \sqrt{2 \, \rm Var} \big(\tau_{\rm m}(t) \big)$$

Ampiezza e valore medio della tensione normale al piano

Poiché la tensione normale al piano è una grandezza scalare e non vettoriale, per essa è più semplice definire ampiezza e valore medio.

$$\sigma_{n,a} = \frac{1}{2} \left[\max_{t_1 \in T} \sigma_n(t_1) - \min_{t_2 \in T} \sigma_n(t_2) \right] \qquad \sigma_{n,m} = \frac{1}{2} \left[\max_{t_1 \in T} \sigma_n(t_1) + \min_{t_1 \in T} \sigma_n(t_1) \right]$$

 $\sigma_{n,max} = \sigma_{n,a} + \sigma_{n,m}$.

Calcolo delle componenti in sollecitazioni biassiali σ_x - τ_{xy}

In uno stato tensionale piano avente $\sigma_x e \tau_{xy}$, in ogni istante è possibile determinare il valore massimo della tensione tangenziale τ_n che agirà su di un piano inclinato di un angolo $\phi_{n,t}$ rispetto all'asse "X".

$$\begin{aligned} \tau_{n} &= \sqrt{\frac{\sigma_{x}^{2}(t)}{4} + \tau_{xy}^{2}(t)} \\ \sigma_{n} &= \frac{\sigma_{x}(t)}{2} \\ \phi_{n,t} &= \frac{1}{2} \left(\arccos \frac{\left| \tau_{xy}(t) \right|}{\left| \tau_{n}(t) \right|} \right); \qquad \alpha = \arcsin \frac{\left| \tau_{xy}(t) \right|}{\left| \tau_{n}(t) \right|} \end{aligned}$$

È opportuno ricercare, in prima approssimazione, il piano critico tra i piani di massima tensione tangenziale negli istanti di massimo e di minimo di ciascuna delle componenti. In termini generici il valori tensionali lungo una direzione orientata genericamente rispetto all'asse X, risulta:

$$\sigma(\phi; t) = \frac{\sigma_x}{2} [1 + \cos 2\phi] - \tau_{xy} \sin 2\phi$$

$$\tau(\phi, t) = \frac{\sigma_x}{2} \sin 2\phi + \tau_{xy} \cos 2\phi$$

Tensione idrostatica

$$\sigma_{\rm H}(t) = \frac{1}{3} \cdot tr([\sigma(t)]) = \frac{1}{3} \cdot [\sigma_{\rm x}(t) + \sigma_{\rm y}(t) + \sigma_{\rm z}(t)]$$

o in termini matriciali:

$$\left[\sigma_{\rm H}(t) \right] = \begin{bmatrix} \sigma_{\rm H}(t) & 0 & 0 \\ 0 & \sigma_{\rm H}(t) & 0 \\ 0 & 0 & \sigma_{\rm H}(t) \end{bmatrix}.$$

L'ampiezza e il valore medio possono allora essere calcolati come:

$$\begin{aligned} \sigma_{\mathrm{H},\mathrm{m}} &= \frac{1}{2} \left\{ \max_{t_{1}\in\mathrm{T}} \frac{\mathrm{tr}([\sigma(t_{1})])}{3} + \min_{t_{2}\in\mathrm{T}} \frac{\mathrm{tr}([\sigma(t_{2})])}{3} \right\} = \frac{1}{2} \left\{ \max_{t_{1}\in\mathrm{T}} \sigma_{\mathrm{H}}(t_{1}) + \min_{t_{2}\in\mathrm{T}} \sigma_{\mathrm{H}}(t_{2}) \right\} \\ \sigma_{\mathrm{H},\mathrm{a}} &= \frac{1}{2} \left\{ \max_{t_{1}\in\mathrm{T}} \frac{\mathrm{tr}([\sigma(t_{1})])}{3} - \min_{t_{2}\in\mathrm{T}} \frac{\mathrm{tr}([\sigma(t_{2})])}{3} \right\} = \frac{1}{2} \left\{ \max_{t_{1}\in\mathrm{T}} \sigma_{\mathrm{H}}(t_{1}) - \min_{t_{2}\in\mathrm{T}} \sigma_{\mathrm{H}}(t_{2}) \right\} \end{aligned}$$

Secondo invariante del tensore deviatorico

Il tensore deviatorico è definito come:

$$[\sigma_{D}(t)] = [\sigma(t)] - [\sigma_{H}(t)] = \begin{bmatrix} \sigma_{x}(t) - \sigma_{H}(t) & \tau_{xy}(t) & \tau_{xz}(t) \\ \tau_{xy}(t) & \sigma_{y}(t) - \sigma_{H}(t) & \tau_{yz}(t) \\ \tau_{xz}(t) & \tau_{yz}(t) & \sigma_{z}(t) - \sigma_{H}(t) \end{bmatrix}$$

la radice quadrata del secondo invariante del tensore deviatorico

$$\sqrt{J_2(t)} = \sqrt{\frac{1}{2} [\sigma_D(t)] \cdot [\sigma_D(t)]}. \text{ oppure } \sqrt{J_2(t)} = \sqrt{S_1^2(t) + S_2^2(t) + S_3^2(t) + S_4^2(t) + S_5^2(t)}$$

dove

$$\begin{split} S_{1}(t) &= \frac{\sqrt{3}}{2} \big[\sigma_{x}(t) - \sigma_{H}(t) \big] & S_{3}(t) = \tau_{xy}(t) \\ S_{2}(t) &= \frac{1}{2} \big[\sigma_{y}(t) - \sigma_{z}(t) \big] & S_{5}(t) = \tau_{yz}(t) \end{split}$$

la radice quadrata del secondo invariante del tensore deviatorico è pari al modulo del vettore $S(t) \in \Re^5$, variabile nel tempo, di componenti:

$$S(t) \equiv [S_1(t), S_2(t), S_3(t), S_4(t), S_5(t)]$$

Per calcolare allora l'ampiezza e il valore medio del secondo invariante del tensore deviatorico si può ricorrere all'utilizzo sia del metodo della corda sia del metodo della più piccola ipersfera

Calcolo della ampiezza della radice quadrata del secondo invariante del tensore deviatorico col metodo della corda

Se si considerano due istanti, t_1 e t_2 , della storia di carico in esame i vettori associati a tali istanti possono essere espressi come:

 $S(t_i) \equiv [S_1(t_i), S_2(t_i), S_3(t_i), S_4(t_i), S_5(t_i)]$

La distanza tra gli estremi di tali vettori è data dalla relazione:

$$D = \sqrt{\sum_{i=1}^{5} [S_i(t_1) - S_i(t_2)]^2}$$

l'ampiezza della radice quadrata del secondo invariante del tensore deviatorico può essere calcolata come: $\sqrt{J_{2,a}} = \frac{D_{max}}{2}$.

Criteri di resistenza a fatica multiassiale

Il criterio di Gough Schematizzazione dei materiali

Materiali DUTTILI:
$$\frac{\sigma_{A\infty}}{\tau_{A\infty}} \ge \sqrt{3}$$
Materiali FRAGILI: $1.2 < \frac{\sigma_{A\infty}}{\tau_{A\infty}} < \sqrt{3}$ Criterio di resistenza

Criterio di resistenza

$$\left(\frac{\sigma_{x,a}}{\sigma_{A\infty}}\right)^{2} + \left(\frac{\tau_{xy,a}}{\tau_{A\infty}}\right)^{2} \le 1$$
 (materiali DUTTILI)
$$\left(\frac{\tau_{xy,a}}{\tau_{A\infty}}\right)^{2} + \left(\frac{\sigma_{x,a}}{\sigma_{A\infty}}\right)^{2} \left(\frac{\sigma_{A\infty}}{\tau_{A\infty}} - 1\right) + \left(\frac{\sigma_{x,a}}{\sigma_{A\infty}}\right) \left(2 - \frac{\sigma_{A\infty}}{\tau_{A\infty}}\right) \le 1$$
 (materiali FRAGILI)

dove con σ_{A^∞} e τ_{A^∞} si sono indicati, rispettivamente, il limite di fatica a flessione per R=-1 e a torsione per R=-1, determinati, ambedue, sul materiale base.

Relazioni di Gough nel piano $\tau_{xy,a}$ - $\sigma_{x,a}$.

Possibile definizione di ampiezza di tensione equivalente

$$\sigma_{a,eq} = \sqrt{\sigma_{x,a}^2 + \left(\frac{\sigma_{A\infty}}{\tau_{A\infty}}\right)^2 \tau_{xy,a}^2} \le \sigma_{A\infty}$$

Estensione del criterio di Gough a componenti intagliati

L'approccio proposto da Gough può essere anche esteso al caso di organi reali intagliati correggendo semplicemente il valore dei limiti di fatica mediante gli usuali coefficienti K_f , $K_d e K_l$.

$$\sigma_{A\infty}^{0} = \frac{\sigma_{A\infty}}{K_{ff}K_{I}K_{d}} \qquad \qquad \tau_{A\infty}^{0} = \frac{\tau_{A\infty}}{K_{ff}K_{I}K_{d}}$$

Estensione del criterio di Gough a sollecitazioni aventi $R \neq -1$

Nel caso di flessione con rapporto di ciclo R, il limite di fatica può essere, allora, determinato come:

$$\sigma_{AR}^{0} = \sigma_{A\infty}^{0} \left(1 - \frac{\sigma_{x,m}}{\sigma_{R}} \right) = \frac{\sigma_{A\infty}}{K_{ff}K_{I}K_{d}} \left(1 - \frac{\sigma_{x,m}}{\sigma_{R}} \right)$$

dove con σ_R si è indicato il valore della tensione di rottura del materiale base. In modo del tutto analogo si potrebbe calcolare (anche se questa correzione può essere trascurata) il valore del limite di fatica in presenza di una tensione media diversa da

zero:
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{$$

$$\tau_{AR}^{0} = \tau_{A\infty}^{0} \left(1 - \frac{\tau_{xy,m}}{\tau_{R}} \right) = \frac{\tau_{A\infty}}{K_{ff}K_{I}K_{d}} \left(1 - \frac{\tau_{xy,m}}{\tau_{R}} \right)$$

dove con τ_R si è indicato il valore della tensione di rottura a torsione del materiale base.

Verifica in presenza di momento torcente costante

In particolari applicazioni, come ad esempio negli alberi di trasmissione, il valore della ampiezza della sollecitazione di torsione può essere nullo, mentre la componente flessionale varia con rapporto di ciclo R=-1. In questi casi per per eseguire una verifica maggiormente in vantaggio di sicurezza si può sostituire, $\tau_{xy,a}$ con $\tau_{xy,m}$:

$$\sigma_{a,eq} = \sqrt{\sigma_{x,a}^2 + H^2 \tau_{xy,m}^2} \le \sigma_{A\infty}^0$$

ed esprimere il rapporto H come:

$$H = \frac{\sigma_{max}^0}{\tau_s}$$

dove con τ_S si è indicato il valore della tensione tangenziale di snervamento.

Il criterio di Crossland

La formulazione analitica del criterio di Crossland è basata su una combinazione lineare della ampiezza della radice quadrata del secondo invariante del tensore deviatorico, $\sqrt{1}$ e della tensione idrostatica massima $\sigma_{\rm H}$

 $\sqrt{J_{2,a}}$, e della tensione idrostatica massima, $\sigma_{H,max}$:

$$\sqrt{J_{2,a}} + \left(\frac{3\tau_{A\infty}}{\sigma_{A\infty}} - \sqrt{3}\right)\sigma_{H,max} \le \tau_{A\infty}$$

Ovvero, una ampiezza di tensione tangenziale equivalente pari a:

$$\tau_{a,eq} = \sqrt{J_{2,a}} + \left(\frac{3\tau_{A\infty}}{\sigma_{A\infty}} - \sqrt{3}\right)\sigma_{H,max} \le \tau_{A\infty}$$

Il criterio di Matake

Il criterio di Matake si basa sulla determinazione del piano su cui risulta essere massimo il valore della ampiezza della tensione tangenziale (piano critico). Indicando, quindi, con $\phi^* \in \Theta^*$ gli angoli che individuano nello spazio l'orientazione di tale piano, il criterio può essere espresso come la combinazione lineare della ampiezza della tensione tangenziale e della tensione normale massima calcolate sul piano critico, ovvero:

 $\tau_{a}(\phi^{*},\theta^{*}) + \alpha \cdot \sigma_{n,max}(\phi^{*},\theta^{*}) \leq \beta.$

Le costanti α e β possono essere determinate applicando il criterio al caso di una sollecitazione monoassiale alterna con R=-1 e alla torsione alterna con R=-1 si ricava:

$$\alpha = \left(\frac{2\tau_{A\infty}}{\sigma_{A\infty}}\right) - 1; \qquad \beta = \tau_{t-1}$$

Il criterio in discussione può, allora, essere riscritto come:

$$\tau_{a,eq} = \tau_{a}(\phi^{*},\theta^{*}) + \left(\frac{2\tau_{A\infty}}{\sigma_{A\infty}} - 1\right)\sigma_{n,max}(\phi^{*},\theta^{*}) \leq \tau_{A\infty}.$$

Il criterio di McDiarmid

Sul piano critico definito come nel criterio di Matake, si applicano le seguenti relazioni:

$$\frac{\tau_{a}(\phi^{*},\theta^{*})}{\tau_{A^{\infty}}} + \frac{\sigma_{n,max}(\phi^{*},\theta^{*})}{2\sigma_{R}} \leq 1$$

$$\tau_{a,eq} = \tau_{a}(\phi^{*}, \theta^{*}) + \frac{\tau_{A\infty}}{2\sigma_{R}}\sigma_{n,max}(\phi^{*}, \theta^{*}) \leq \tau_{A\infty}$$

Meccanica della Frattura

Calcolo del SIF $K_I = \alpha \sigma_{nom} \sqrt{\pi a}$ Dove: a semi-lunghezza della cricca α fattore di forma adimensionale

 σ_{nom} tensione nominale lorda

Fattori di Forma: nei grafici $Y = \alpha \sqrt{\pi}$

Caso 1: cricca centrale in una piastra soggetta a tensione:

formula di Fedderson
$$\alpha = \sqrt{\sec\left(\frac{\pi a}{w}\right)}$$

formula di Irwin $\alpha = \sqrt{\frac{w}{\pi a} \tan\left(\frac{\pi a}{w}\right)}$
dove $\sigma_{nom} = P/(B W)$

Caso 2: singola cricca laterale in una piastra soggetta a tensione:

$$\alpha = 1.122 - 0.231 \left(\frac{a}{w}\right) + 1.055 \left(\frac{a}{w}\right)^2 - 21.71 \left(\frac{a}{w}\right)^3 + 30.38 \left(\frac{a}{w}\right)^4$$

dove $\sigma_{nom} = P/(B W)$

Caso 3: doppia cricca laterale in una piastra soggetta a tensione:

$$\alpha = 1.122 + 0.203 \left(\frac{2a}{w}\right) - 1.196 \left(\frac{2a}{w}\right)^2 + 1.930 \left(\frac{2a}{w}\right)^3$$

dove $\sigma_{nom} = P/(B W)$

Caso 4: singola cricca laterale in una trave soggetta a flessione:

$$\alpha = 1.122 - 1.394 \left(\frac{a}{w}\right) + 7.318 \left(\frac{a}{w}\right)^2 - 13.07 \left(\frac{a}{w}\right)^3 + 13.99 \left(\frac{a}{w}\right)^4$$

dove $\sigma_{nom} = 6M / (B W^2)$

Geometrie Tridimensionali

Caso 5: cricca interna circolare di raggio "a" $\alpha = \frac{2}{\pi}$

Caso 6: cricca superficiale semiellittica

Sia - "a" la profondità - "2c" la lunghezza superficiale

Meccanica della frattura: Verifiche statiche

 $\alpha = \frac{1.122}{\sqrt{\Phi}}$

Fattori di influenza su K critico:

spessore:
$$K_{C} = K_{IC}$$
 per spessori t maggiori di $t^* = 2.5 \left(\frac{K_{IC}}{\sigma_s}\right)^2$

Verifica fondamentale della meccanica della frattura: K

 $K_{I} \leq K_{IC}$

Campo di utilizzo della meccanica della frattura statica:

 $a \ge a_0 = \frac{1}{\pi} \left(\frac{K_{IC}}{(\alpha) \, \sigma_s} \right)^2$

Meccanica della frattura: Verifiche a Fatica

Velocità di propagazione della cricca (Curva di Paris): $\frac{da}{dn} = C \Delta K^m$

con C ed m parametri dipendenti dal materiale.

Verifica a vita infinita (soglia di non propagazione):

Verifica a vita a termine (calcolo della durata o numero di cicli a rottura):

$$N_{f} = \int_{0}^{N_{f}} dN = \frac{1}{C \Delta \sigma_{nom}^{m} \pi^{\frac{m}{2}}} \int_{a_{i}}^{a_{f}} \frac{1}{\alpha^{m} a^{\frac{m}{2}}} da$$

se il fattore di forma può considerarsi costante al variare di "a":

$$N_{f} = \frac{1}{C \Delta \sigma_{nom}^{m} \pi^{\frac{m}{2}} \alpha^{m}} \frac{1}{\left(\frac{m}{2} - 1\right)} \left[\frac{1}{a_{i}\left(\frac{m}{2} - 1\right)} - \frac{1}{a_{f}\left(\frac{m}{2} - 1\right)} \right]$$

dove a_i ed a_f sono le lunghezze iniziali e finali della cricca, in particolare la lunghezza finale si stima imponendo: $K_{IC} = \alpha \sigma_{n \text{ om},max} \sqrt{\pi a_f}$

 $\Delta K_{I} \leq \Delta K_{th}$

Campo di utilizzo della meccanica della frattura, fatica: $a \ge a_{0,f} = \frac{1}{\pi} \left(\frac{\Delta K_{th}}{(\alpha) 2 \sigma_A} \right)^2$

ELEMENTI DI PLASTICITA

Schematizzazione del materiale

Materiale Elastico-Perfettamente Plastico

$$\begin{cases} \sigma = E \epsilon \quad \epsilon \le \frac{\sigma_y}{E} \\ \sigma = \sigma_y \quad \epsilon > \frac{\sigma_y}{E} \end{cases}$$

E: modulo elastico; σ_y carico di snervamento

Materiale ad incrudimento variabile: Ramberg-Osgood

$$\varepsilon = \frac{\sigma}{E} + \left(\frac{\sigma}{k}\right)^{\frac{1}{n}}$$

E: modulo elastico; k coefficiente di resistenza; n coefficiente di incrudimento

Flessione delle travi in campo plastico

Coefficiente di adattamento plastico

$$\psi = \frac{M_{f,max}^{p}}{M_{f,max}^{e}}$$

 $M_{f,max}^{e}$ momento flettente massimo ottenibile con materiale lineare elastico, $M_{f,max}^{p}$ momento flettente massimo ottenibile con materiale elasto-elastico

Momento flettente massimo per sezione rettangolare e con materiale elasticoperfettamente plastico

 $M_{f,max}^{p} = \frac{bh^{2}}{4}\sigma_{y}$

b: larghezza della sezione, h: altezza della sezione, σ_y : carico di snervamento

Effetto di intaglio in campo plastico

<u>Regola del Neuber</u>

 $K_{\sigma} \cdot K_{\varepsilon} = K_t^2$

 K_{σ} coefficiente di concentrazione delle tensioni in campo plastico; K_{ϵ} coefficiente di concentrazione delle deformazioni in campo plastico; K_t coefficiente di concentrazione delle tensioni elastico;

Regola di Neuber per materiale tipo Ramberg-Osgood

$$\frac{K_{t}^{2} \sigma_{n}^{2}}{E} = \frac{\sigma_{picco}^{2}}{E} + \sigma_{picco} \left(\frac{\sigma_{picco}}{k}\right)^{\frac{1}{n}}$$

 σ_{picco} tensione di picco all'apice dell'intaglio, σ_n tensione nominale, K_t coefficiente di concentrazione delle tensioni elastico

Costanza del K_{ε}

 $K_{\varepsilon} = K_{t}$

r_i: r_e:

 $\begin{array}{l} R:\\ \sigma_y:\\ \sigma_r: \end{array}$

Regola della costanza del K $_{\epsilon}$ per materiale tipo Ramberg-Osgood

$$\frac{\mathbf{K}_{t} \boldsymbol{\sigma}_{n}}{\mathbf{E}} = \frac{\boldsymbol{\sigma}_{picco}}{\mathbf{E}} + \left(\frac{\boldsymbol{\sigma}_{picco}}{\mathbf{k}}\right)^{T}$$

 σ_{picco} tensione di picco all'apice dell'intaglio

Autofrettaggio

raggio interno raggio esterno	σ_{θ} : tensione tangenziale σ_{eq} : tensione equivalente di Von Mises
carico di snervamento	p : pressione interna p _{limite} : pressione di scoppio
tensione radiale	

Tensione radiale, tangenziale e di Von Mises in un recipiente cilindrico dotato di fondi di estremità e sollecitato da una pressione interna p nell'ipotesi di materiale lineare elastico:

$$\sigma_{\theta} = \frac{p r_{i}^{2}}{r_{e}^{2} - r_{i}^{2}} \left(1 + \frac{r_{e}^{2}}{r^{2}} \right) ; \ \sigma_{r} = \frac{p r_{i}^{2}}{r_{e}^{2} - r_{i}^{2}} \left(1 - \frac{r_{e}^{2}}{r^{2}} \right) ; \ \sigma_{eq} = \frac{\sqrt{3}}{2} \left(\sigma_{\theta} - \sigma_{r} \right) = \sqrt{3} \frac{p r_{i}^{2} r_{e}^{2}}{r_{e}^{2} - r_{i}^{2}} \frac{1}{r^{2}}$$

Tensione radiale, tangenziale e di Von Mises in un recipiente cilindrico dotato di fondi di estremità e sollecitato da una pressione interna p nell'ipotesi di materiale elasticoperfettamente plastico:

zona elastica ($r \ge R$)

$$\sigma_{\theta} = \frac{\sigma_{y}}{\sqrt{3}} \frac{R^{2}}{r_{e}^{2}} \left(1 + \frac{r_{e}^{2}}{r^{2}} \right) ; \sigma_{r} = \frac{\sigma_{y}}{\sqrt{3}} \frac{R^{2}}{r_{e}^{2}} \left(1 - \frac{r_{e}^{2}}{r^{2}} \right) ; \sigma_{eq} = \sigma_{y} \frac{R^{2}}{r^{2}}$$

zona plastica (r<R)

$$\sigma_{\theta} = \frac{\sigma_y}{\sqrt{3}} \left(\frac{R^2}{r_e^2} - 2 \ln \frac{R}{r} + 1 \right) ; \sigma_r = \frac{\sigma_y}{\sqrt{3}} \left(\frac{R^2}{r_e^2} - 2 \ln \frac{R}{r} - 1 \right) ; \sigma_{eq} = \sigma_y$$

Raggio plastico R:

$$p + \frac{\sigma_y}{\sqrt{3}} \left(\frac{R^2}{r_e^2} - 2 \ln \frac{R}{r_i} - 1 \right) = 0$$

Pressione di scoppio

$$p_{\text{limite}} = \frac{2}{\sqrt{3}} \sigma_y \ln \frac{r_e}{r_i}$$

Fatica Oligo-ciclica

Comportamento ciclico del materiale

Il comportamento ciclico del materiale viene schematizzato dalla relazione di Ramberg Osgood applicando alle ampiezze di tensione e deformazione e utilizzando le grandezze cicliche stabilizzate.

1

$$\varepsilon_{a,tot} = \varepsilon_{a,el} + \varepsilon_{a,pl} = \frac{\sigma_a}{E} + \left(\frac{\sigma_a}{k'}\right)^{\frac{1}{n'}}$$

I valori tenso-deformativi all'apice degli intagli vengono valutati in base alle relazioni riportate in "Effetto di Intaglio in Campo Plastico".

La durata del materiale:

La durata del materiale si esprime in termini di numero di alternanze $N' = 2 N_f$, dove N_f è il numero di cicli a rottura per fatica:

$$\begin{split} \boldsymbol{\epsilon}_{a,\text{tot}} &= \boldsymbol{\epsilon}_{a,\text{el}} + \boldsymbol{\epsilon}_{a,\text{pl}} \\ &= \frac{\sigma'_{f}}{E} (N')^{b} + \boldsymbol{\epsilon'}_{f} (N')^{c} \end{split}$$

Dove i seguenti parametri dipendono dal materiale:

- σ 'f coefficiente di resistenza a fatica
- b esponente di resistenza a fatica
- ε coefficiente di duttilità a fatica
- c esponente di duttilità a fatica

Instabilità dell'equilibrio

Instabilità globale degli elementi snelli

<u>Caso Euleriano di riferimento</u> Carico critico:

$$P_{cr} = \frac{\pi^2 E I}{L^2} = \frac{\pi^2 E I}{{L_0}^2}$$

Dove

- L₀ è la lunghezza libera di inflessione della trave (distanza tra due flessi della deformata nel caso di riferimento coincide con la lunghezza della trave.
- E modulo elastico del materiale
- I momento d'inerzia minimo della sezione della trave

Altre condizioni di vincolo

Caso a: $L_0 = 2 L$ Caso b: $L_0 = 0.7 L$

Caso c: $L_0 = L/2$

Instabilità locale delle pareti sottili

Uno stato tensionale di compressione (mono o bi assiale) può indurre un'instabilità locale di una parete sottile; di seguito si riportano alcuni casi notevoli:

In prima approssimazione, geometrie complesse possono essere ricondotte a casi notevoli:

Esempio 1: in una sezione quadrata cava, si può stimare la tensione di instabilità assimilando i lati a pareti sottili con i bordi appoggiati ad un vincolo (edges supported).

Esempio 2: una sezione a "C" ha le due ali "One edge supported" e la base "edges suported"

Esempio 3: in prima approssimazione, nel caso di flessione pura si può ritenere la tensione di instabilità uguale a quella di compressione uniforme.

Resistenza di strutture in parete sottile

Si definisce tensione critica:

$$\sigma_{cr} = k_{\sigma} \frac{\pi^2 E}{12 (1 - \nu^2)} \left(\frac{t}{b_p}\right)^2$$

La snellezza di un pannello è data da:

$$\lambda_{\rm P} = \sqrt{\frac{f_{\rm y}}{\sigma_{\rm cr}}} = \frac{b_{\rm P}}{t} \sqrt{\frac{12 (1 - \nu^2) f_{\rm y}}{\pi^2 \ {\rm E} \ k_{\sigma}}} \cong 1,052 \frac{b_{\rm P}}{t} \sqrt{\frac{f_{\rm y}}{{\rm E} \ k_{\sigma}}}$$

Il valore efficace di un pannello si determina in genere con: $b_{eff} = \rho b_p$

Mentre il fattore k_{σ} si deduce nelle seguenti tabelle:

Appendici

<u>Geometria delle a</u>	<u>aree</u>		
Geometria	Baricentro	Area	Momento d'inerzia
Cerchio 1 R y ₁ 1		πR^2	$J_1 = \frac{\pi}{4} R^4$
Anello sottile		2π R t	$J_1 = \pi R^3 t$
Rettangolo 2 4 y_2 d 14 114 14		b∙d	$J_1 = \frac{1}{12}bd^3$
Rettangolo Cavo 2 y_2 d_1 d_2 d_1 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_2 d_1 d_2 d_2 d_1 d_2 d_2 d_1 d_2 d_2 d_2 d_2 d_3 d_1 d_2 d_2 d_3 d_1 d_2 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_3 d_1 d_3 d_1 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_1 d_1 d_2 d_1 d_2 d_1 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_2 d_1 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_1 d_2 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_1 d_2 d_3 d_1 d_1		$\mathbf{b} \cdot \mathbf{d} - \mathbf{b}_1 \cdot \mathbf{d}_1$	$J_1 = \frac{b d^3 - b_1 d_1^3}{12}$
Sezioni a T 2 1 1 1 1 1 1 1 1	$y_1 = \frac{bt^2 - t_w d(2t + d)}{2(tb + t_w d)}$	$\mathbf{A} = \mathbf{t}\mathbf{b} + \mathbf{t}_{w}\mathbf{d}$	$J_{1} = \frac{b(d+t)^{3}}{3} - \frac{d^{3}(b-t_{w})}{3} - A(d+t-y_{1})^{2}$
Sezioni ad H $\downarrow \downarrow $		$A = 2tb + t_w d$	$J_{1} = \frac{b(d+2t)^{3}}{12} - \frac{d^{3}(b-t_{w})}{12}$ $J_{2} = \frac{tb^{3}}{6} + \frac{t_{w}^{3}d}{12}$

$1 \xrightarrow{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$y_{1} = \frac{bt^{2} + 2t_{w}d(2t+d)}{2(tb+2t_{w}d)}$	$A = tb + 2t_w d$	$J_{1} = \frac{b(d+t)^{3}}{3} - \frac{d^{3}(b-2t_{w})}{3} - A(d+t-y_{1})^{2}$ $J_{2} = \frac{(d+t)b^{3}}{12} - \frac{(b-2t_{w})^{3}d}{12}$
Triangolo isoscele $ \begin{array}{c} 2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$y_1 = \frac{2d}{3}$	$A = \frac{bd}{2}$	$J_1 = \frac{bd^3}{36}$ $J_1 = \frac{b^3d}{48}$

Momento di trasporto:

Inerzia di un'area attorno ad asse generico non baricentrico: $J = J_g + d^2 \cdot A$ con J_g inerzia baricentrica e d distanza baricentro dall'asse.

Momento d'Inerzia Polare

Momento d'inerzia polare, noti momenti d'inerzia attorno agli assi principali "X" e "Y": $J_T = J_X + J_Y$