
Leonhard Euler (1707 1783) was a Swiss mathematician who became a court
mathematician and later a professor of mathematics in Saint Petersburg, Russia. He
produced many works in algebra and geometry and was interested in the geometri-
cal form of deflection curves in strength of materials. Euler s column buckling load
is quite familiar to mechanical and civil engineers, and Euler s constant and Euler s
coordinate system are well known to mathematicians. He derived the equation of
motion for the bending vibrations of a rod (Euler-Bernoulli theory) and presented
a series form of solution, as well as studying the dynamics of a vibrating ring.
(Courtesy of Dirk J. Struik, A Concise History of Mathematics, 2nd ed., Dover
Publications, New York, 1948.)
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We studied all the aspects of modeling and analysis of vibrating systems in the previous

chapters. We will now consider methods of eliminating or reducing unwanted vibration.

The acceptable levels of vibration must be known before we can quantify the levels to be

eliminated or reduced. The vibration nomograph and vibration criteria which indicate accept-

able levels of vibration are outlined at the beginning. The vibration to be eliminated or

reduced can be in the form of one or more forms of disturbance displacement, velocity,
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770 CHAPTER 9 VIBRATION CONTROL

acceleration, and transmitted force. The following methods are discussed to

eliminate/reduce vibration at the source:

* Balancing of rotating machines single- and two-plane balancing.

* Controlling the response and stability of rotating shafts.

* Balancing of reciprocating engines.

* Reducing vibration caused by impacts due to clearances in the joints of machines and

mechanisms.

The following methods are discussed to reduce transmission of vibration from the source:

* Changing the natural frequency of the system when the forcing frequency cannot be

altered.

* Introducing a power-dissipation mechanism by adding dashpots or viscoelastic

materials.

* Designing an isolator which changes the stiffness/damping of the system.

* Using an active control technique.

* Designing a vibration absorber by adding an auxiliary mass to absorb the vibration

energy of the original mass.

Finally, the solution of various vibration-control problems using MATLAB is presented

with numerical examples.

Learning Objectives

After you have finished studying this chapter, you should be able to do the following:

* Use vibration nomographs and vibration criteria to determine the levels of vibration to

be controlled or reduced.

* Apply one- and two-plane balancing techniques for eliminating vibration (unbalance).

* Control the vibration caused by the unbalance in rotating shafts.

* Reduce the unbalance in reciprocating engines.

* Design vibration and shock isolations for systems with fixed base as well as vibrat-

ing base.

* Design active vibration-control systems.

* Design undamped and damped vibration absorbers.

* Use MATLAB for solving vibration-control problems.

9.1 Introduction

There are numerous sources of vibration in an industrial environment: impact processes

such as pile driving and blasting; rotating or reciprocating machinery such as engines,

compressors, and motors; transportation vehicles such as trucks, trains, and aircraft; the

flow of fluids; and many others. The presence of vibration often leads to excessive wear of
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bearings, formation of cracks, loosening of fasteners, structural and mechanical failures,

frequent and costly maintenance of machines, electronic malfunctions through fracture

of solder joints, and abrasion of insulation around electric conductors causing shorts.

The occupational exposure of humans to vibration leads to pain, discomfort, and reduced

efficiency. Vibration can sometimes be eliminated on the basis of theoretical analysis.

However, the manufacturing costs involved in eliminating the vibration may be too high;

a designer must compromise between an acceptable amount of vibration and a reason-

able manufacturing cost. In some cases the excitation or shaking force is inherent in the

machine. As seen earlier, even a relatively small excitation force can cause an undesir-

ably large response near resonance, especially in lightly damped systems. In these cases,

the magnitude of the response can be significantly reduced by the use of isolators and

auxiliary mass absorbers [9.1]. In this chapter, we shall consider various techniques of

vibration control that is, methods involving the elimination or reduction of vibration.

9.2 Vibration Nomograph and Vibration Criteria
The acceptable levels of vibration are often specified in terms of the response of an

undamped single-degree-of-freedom system undergoing harmonic vibration. The bounds

are shown in a graph, called the vibration nomograph, which displays the variations of

displacement, velocity, and acceleration amplitudes with respect to the frequency of

vibration. For the harmonic motion

(9.1)

the velocity and accelerations are given by

(9.2)

(9.3)

where is the circular frequency (rad/s), f is the linear frequency (Hz), and X is the ampli-

tude of displacement. The amplitudes of displacement (X), velocity and accelera-

tion are related as

(9.4)

(9.5)

By taking logarithms of Eqs. (9.4) and (9.5), we obtain the following linear relations:

(9.6)

(9.7) ln vmax = -
 
ln amax - ln (2pf)

 ln vmax = ln (2pf) + ln X

 amax = -
 
4 p

2f2X = -  2 pfvmax

 vmax = 2pfX

1amax2

1vmax2

v

 a(t) = x 
$
(t) = -  v2X sin vt = -4 p

2f2X sin vt

 v(t) = x 
#
(t) = vX cos vt = 2pfX cos vt

x(t) = X sin vt
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It can be seen that for a constant value of the displacement amplitude (X), Eq. (9.6)

shows that varies with as a straight line with slope Similarly, for a

constant value of the acceleration amplitude Eq. (9.7) indicates that 

varies with as a straight line with slope These variations are shown as a

nomograph in Fig. 9.1. Thus every point on the nomograph denotes a specific sinusoidal

(harmonic) vibration.

-1.ln (2pf)

ln vmax(amax),

+1.ln (2pf)ln vmax
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FIGURE 9.1 Vibration nomograph and vibration criteria [9.2].
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Since the vibration imparted to a human or machine is composed of many frequen-

cies rarely of just one frequency the root mean square values of x(t), v(t), and a(t) are

used in the specification of vibration levels.

The usual ranges of vibration encountered in different scientific and engineering

applications are given below [9.2]:

1. Atomic vibrations: displacement to 

2. Microseisms or minor tremors of earth s crust: to 1 Hz, displacement

to This vibration also denotes the threshold of disturbance

of optical, electronic, and computer equipment.

3. Machinery and building vibration: to 100 Hz, displacement ampli-

tude to 1 mm. The threshold of human perception falls in the frequency range

1 to 8 Hz.

4. Swaying of tall buildings: to 5 Hz, displacement 

10 to 1000 mm.

Vibration severity of machinery is defined in terms of the rms value of the vibration veloc-

ity in ISO 2372 [9.3]. The ISO definition identifies 15 vibration severity ranges in the

velocity range 0.11 71 mm/s for four classes of machines: (1) small, (2) medium, (3)

large, and (4) turbomachine. The vibration severity of class 3 machines, including large

prime movers, is shown in Fig. 9.1. In order to apply these criteria, the vibration is to be

measured on machine surfaces such as bearing caps in the frequency range 10 1000 Hz.

ISO DP 4866 [9.4] gives the vibration severity for whole-building vibration under

blasting and steady-state vibration in the frequency range 1 100 Hz. For the vibration

from blasting, the velocity is to be measured at the building foundation nearest the blast,

and for the steady-state vibration, the peak velocity is to be measured on the top floor.

The limits given are 3 5 mm/s for threshold of damage and 5 30 mm/s for minor dam-

age. The vibration results reported by Steffens [9.5] on structural damage are also shown

in Fig. 9.1.

The vibration limits recommended in ISO 2631 [9.6] on human sensitivity to vibra-

tion are also shown in Fig. 9.1. In the United States an estimated 8 million workers are

exposed to either whole-body vibration or segmented vibration to specific body parts.

The whole-body vibration may be due to transmission through a supporting structure

such as the seat of a helicopter, and the vibration to specific body parts may be due to

work processes such as compacting, drilling, and chain-saw operations. Human toler-

ance of whole-body vibration is found to be lowest in the 4 8 Hz frequency range. The

segmental vibration is found to cause localized stress injuries to different body parts at

different frequencies, as indicated in Fig. 9.2. In addition, the following effects have

been observed at different frequencies [9.7]: motion sickness (0.1 1 Hz), blurring vision

(2 20 Hz), speech disturbance (1 20 Hz), interference with tasks (0.5 20 Hz), and after-

fatigue (0.2 15 Hz).

The acceptable vibration levels for laboratories that maintain reference standards are

also shown in Fig. 9.1.

amplitude =Frequency range = 0.1

= 0.01

Frequency = 10

10
-3

 mm.amplitude = 10
-5

Frequency = 0.1

10
-6

 mm.amplitude = 10 
-

    

8Frequency = 10
12

 Hz,
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E X A M P L E  9 . 1

Head (25 Hz)
Eyeballs (30 60 Hz)

Chest wall (60 Hz)

Arm (16 30 Hz)

Hand
(50 150 Hz)

Legs (2 20 Hz)

Spine
(10 12 Hz)

Pelvic mass
Buttocks
(4 8 Hz)

FIGURE 9.2 Vibration frequency sensitivity of different parts of

human body.

Helicopter Seat Vibration Reduction

The seat of a helicopter, with the pilot, weighs 1000 N and is found to have a static deflection of

10 mm under self weight. The vibration of the rotor is transmitted to the base of the seat as harmonic

motion with frequency 4 Hz and amplitude 0.2 mm.

a. What is the level of vibration felt by the pilot?

b. How can the seat be redesigned to reduce the effect of vibration?

Solution:

a. By modeling the seat as an undamped single-degree-of-freedom system, we can compute the

following:

Stiffness = k =

W

dst

=

1000

0.01
= 105 N/m

Mass = m = 1000/9.81 = 101.9368 kg
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9.3 REDUCTION OF VIBRATION AT THE SOURCE 775

Since the seat is subject to harmonic base excitation, the amplitude of vibration felt by the pilot

(mass of the seat) is given by Eq. (3.68) with 

(E.1)

where Y is the amplitude of base displacement. Equation (E.1) yields

The amplitudes of velocity and acceleration felt by the pilot are given by 

and Corre-

sponding to the frequency 4 Hz, Fig. 9.1 shows that the amplitude of motion of 0.3616 mm

may not cause much discomfort. However, the velocity and acceleration levels at the same fre-

quency (4 Hz) are not acceptable for a comfortable ride.

b. To bring the vibration level to an acceptable level, let us try to bring the acceleration felt by the

pilot from the level to Using 

we obtain This leads to

This gives the new natural frequency of the seat as

Using the relation with the new stiffness is given by

This implies that the stiffness of the seat is to be reduced from to

4722.9837 N/m. This can be accomplished by using a softer material for the seat or by using a

different spring design. Alternatively, the desired acceleration level can be achieved by increas-

ing the mass of the seat. However, this solution is not usually acceptable, as it increases the

weight of the helicopter.

*

9.3 Reduction of Vibration at the Source

The first thing to be explored to control vibrations is to try to alter the source so that it pro-

duces less vibration. This method may not always be feasible. Some examples of the

sources of vibration that cannot be altered are earthquake excitation, atmospheric turbu-

lence, road roughness, and engine combustion instability. On the other hand, certain

105 N/mk = 4722.9837 N/m.

m = 101.9368 kg,vn = 2k/m

vn =
v

3.6923
=

8 p

3.6923
= 6.8068 rad/s

X

Y
=

0.01583

0.2
= ;  

1

1 - r2
 or r = 3.6923

X = 0.01583 mm.-(8p)2X,

amax = 10 mm/s2
= -(2 pf)2X =0.01 m/s2.0.2284 m/s2

X = 228.4074 mm/s2
= 0.2284 m/s2.v2X = (2pf)2(5)(0.3616) = 9.0887 mm/s,

vX = 2pfX = 2(p)

X =
0.2

1 - 1.24622
= 0.3616 mm

X = ;  
Y

1 - r2

z = 0:

Frequency ratio = r =
v

vn
=

4.9849

4.0
= 1.2462

Natural frequency = vn = A
k

m
= B

105

101.9368
= 31.3209 rad/s = 4.9849 Hz
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sources such as unbalance in rotating or reciprocating machines can be altered to reduce

the vibrations. This can be achieved, usually, by using either internal balancing or an

increase in the precision of machine elements. The use of close tolerances and better sur-

face finish for machine parts (which have relative motion with respect to one another)

make the machine less susceptible to vibration. Of course, there may be economic and

manufacturing constraints on the degree of balancing that can be achieved or the precision

with which the machine parts can be made. We shall consider the analysis of rotating and

reciprocating machines in the presence of unbalance as well as the means of controlling

the vibrations that result from unbalanced forces.

9.4 Balancing of Rotating Machines
The presence of an eccentric or unbalanced mass in a rotating disc causes vibration, which

may be acceptable up to a certain level. If the vibration caused by an unbalanced mass is

not acceptable, it can be eliminated either by removing the eccentric mass or by adding an

equal mass in such a position that it cancels the effect of the unbalance. In order to use this

procedure, we need to determine the amount and location of the eccentric mass experi-

mentally. The unbalance in practical machines can be attributed to such irregularities as

machining errors and variations in sizes of bolts, nuts, rivets, and welds. In this section, we

shall consider two types of balancing: single-plane or static balancing and two-plane or

dynamic balancing [9.9, 9.10].

9.4.1
Single-Plane
Balancing

Consider a machine element in the form of a thin circular disc, such as a fan, flywheel, gear,

and a grinding wheel mounted on a shaft. When the center of mass is displaced from the

axis of rotation due to manufacturing errors, the machine element is said to be statically

unbalanced. To determine whether a disc is balanced or not, mount the shaft on two low-

friction bearings, as shown in Fig. 9.3(a). Rotate the disc and permit it to come to rest. Mark

the lowest point on the circumference of the disc with chalk. Repeat the process several

times, each time marking the lowest point on the disc with chalk. If the disc is balanced, the

chalk marks will be scattered randomly all over the circumference. On the other hand, if the

disc is unbalanced, all the chalk marks will coincide.

The unbalance detected by this procedure is known as static unbalance. The static

unbalance can be corrected by removing (drilling) metal at the chalk mark or by adding a

weight at 180° from the chalk mark. Since the magnitude of unbalance is not known, the

amount of material to be removed or added must be determined by trial and error. This pro-

cedure is called single-plane balancing,  since all the mass lies practically in a single

plane. The amount of unbalance can be found by rotating the disc at a known speed and

measuring the reactions at the two bearings (see Fig. 9.3(b)). If an unbalanced mass m is

located at a radius r of the disc, the centrifugal force will be Thus the measured

bearing reactions and give m and r:

(9.8)F1 =

a2

l
 mrv2, F2 =

a1

l
 mrv2

F2F1

mrv2.

v
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FIGURE 9.3 Single-plane balancing of a disc.

Another procedure for single-plane balancing, using a vibration analyzer, is illustrated in

Fig. 9.4. Here, a grinding wheel (disc) is attached to a rotating shaft that has bearing at A

and is driven by an electric motor rotating at an angular velocity 

Before starting the procedure, reference marks, also known as phase marks, are placed

both on the rotor (wheel) and the stator, as shown in Fig. 9.5(a). A vibration pickup is

placed in contact with the bearing, as shown in Fig. 9.4, and the vibration analyzer is set to

a frequency corresponding to the angular velocity of the grinding wheel. The vibration sig-

nal (the displacement amplitude) produced by the unbalance can be read from the indicat-

ing meter of the vibration analyzer. A stroboscopic light is fired by the vibration analyzer

at the frequency of the rotating wheel. When the rotor rotates at speed the phase mark

on the rotor appears stationary under the stroboscopic light but is positioned at an angle 

from the mark on the stator, as shown in Fig. 9.5(b), due to phase lag in the response. Both

the angle and the amplitude (read from the vibration analyzer) caused by the original

unbalance are noted. The rotor is then stopped, and a known trial weight W is attached to

the rotor, as shown in Fig. 9.5(b). When the rotor runs at speed the new angular positionv,

Auu

u

v,

v.

M09_RAO08193_5_SE_C09.qxd  8/22/10  1:01 PM  Page 777



778 CHAPTER 9 VIBRATION CONTROL

Reference
mark

Grinding wheel
(rotor)

Direction of original
unbalance

0 0

u
f a

Trial
weight

Trial
weight

0

(a) (b) (c)

0

(d)

FIGURE 9.5 Use of phase marks.

of the rotor phase mark and the vibration amplitude caused by the combined

unbalance of rotor and trial weight, are noted (see Fig. 9.5(c)).1

Now we construct a vector diagram to find the magnitude and location of the correction

mass for balancing the wheel. The original unbalance vector is drawn in an arbitrary

direction, with its length equal to as shown in Fig. 9.6. Then the combined unbalance

vector is drawn as at an angle from the direction of with a length of 

The difference vector in Fig. 9.6 then represents the unbalance vector

due to the trial weight W. The magnitude of can be computed using the law of cosines:

(9.9)

Since the magnitude of the trial weight W and its direction relative to the original unbal-

ance ( in Fig. 9.6) are known, the original unbalance itself must be at an angle awayaa

Aw = [Au
2
+ Au+w

2
- 2AuAu+w cos (f - u)]1/2

A
!

w

A
!

w = A
!

u+w - A
!

u

Au+w.A
!

uf - uA
!

u+w

Au,

A
!

u

Au+w,f

Motor

Vibration
analyzer

Bearing, A
Vibration pick-up

Stroboscope

Grinding wheel
(rotor)

FIGURE 9.4 Single-plane balancing using vibration analyzer.

1Note that if the trial weight is placed in a position that shifts the net unbalance in a clockwise direction, the sta-

tionary position of the phase mark will be shifted by exactly the same amount in the counterclockwise direction,

and vice versa.
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FIGURE 9.6 Unbalance due to trial weight W.

from the position of the trial weight, as shown in Fig. 9.5(d). The angle can be obtained

from the law of cosines:

(9.10)

The magnitude of the original unbalance is located at the same radial

distance from the rotation axis of the rotor as the weight W. Once the location and magni-

tude of the original unbalance are known, correction weight can be added to balance the

wheel properly.

W0 = (Au/Aw) #W,

a = cos-1 c

Au
2
+ Aw

2
- Au+w

2

2AuAw

d

a

9.4.2
Two-Plane
Balancing

The single-plane balancing procedure can be used for balancing in one plane that is, for

rotors of the rigid disc type. If the rotor is an elongated rigid body, as shown in Fig. 9.7,

the unbalance can be anywhere along the length of the rotor. In this case, the rotor can be

balanced by adding balancing weights in any two planes [9.10, 9.11]. For convenience,

the two planes are usually chosen as the end planes of the rotor (shown by dashed lines in

Fig. 9.7).

To see that any unbalanced mass in the rotor can be replaced by two equivalent unbal-

anced masses (in any two planes), consider a rotor with an unbalanced mass m at a distance

Plane L Plane R

Rigid rotor

Bearing,
A

Bearing,
B

FIGURE 9.7 Two-plane balancing 

of a rotor.
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FIGURE 9.8 Representation of an unbalanced mass

as two equivalent unbalanced masses.

l/3 from the right end, as shown in Fig. 9.8(a). When the rotor rotates at a speed of the

force due to the unbalance will be where R is the radius of the rotor. The unbal-

anced mass m can be replaced by two masses and located at the ends of the rotor, as

shown in Fig. 9.8(b). The forces exerted on the rotor by these masses are and

For the equivalence of force in Figs. 9.8(a) and (b), we have

(9.11)

For the equivalence of moments in the two cases, we consider moments about the right end

so that

(9.12)

Equations (9.11) and (9.12) give and Thus any unbalanced

mass can be replaced by two equivalent unbalanced masses in the end planes of the

rotor.

We now consider the two-plane balancing procedure using a vibration analyzer. In

Fig. 9.9, the total unbalance in the rotor is replaced by two unbalanced weights and 

in the left and the right planes, respectively. At the rotor s operating speed the vibration

amplitude and phase due to the original unbalance are measured at the two bearings A and

B, and the results are recorded as vectors and The magnitude of the vibration vector

is taken as the vibration amplitude, while the direction of the vector is taken as the negative

V
!

B.V
!

A

v,

URUL

m2 = 2m/3.m1 = m/3

mv2R 

l

3
= m1v

2Rl or m = 3m1

mv2R = m1v
2R + m2v

2R or m = m1 + m2

F2 = m2v
2R.

F1 = m1v
2R

m2,m1

F = mv2R,

v,
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of the phase angle observed under stroboscopic light with reference to the stator reference

line. The measured vectors and can be expressed as

(9.13)

(9.14)

where can be considered as a vector, reflecting the effect of the unbalance in plane j

on the vibration at bearing i Note that and all the vectors

are unknown in Eqs. (9.13) and (9.14).

As in the case of single-plane balancing, we add known trial weights and take mea-

surements to obtain information about the unbalanced masses. We first add a known

weight in the left plane at a known angular position and measure the displacement and

phase of vibration at the two bearings while the rotor is rotating at speed We denote

these measured vibrations as vectors as

(9.15)

(9.16)

By subtracting Eqs. (9.13) and (9.14) from Eqs. (9.15) and (9.16), respectively, and solving,

we obtain2

(9.17) A
!

AL =
V
!

A - V
!

A

W
!

L

 V
!

B = A
!

BL1U
!

L + W
!

L2 + A
!

BR U
!

R

 V
!

A = A
!

AL1U
!

L + W
!

L2 + A
!

AR U
!

R

v.
W
!

L

A
!

ij

U
!

L,  U
!

R,(i = A, B).(j = L, R)
A
!

ij
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!
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FIGURE 9.9 Two-plane balancing.

2It can be seen that complex subtraction, division, and multiplication are often used in the computation of the bal-

ancing weights. If

we can rewrite and as and where 

and Then the formulas for complex subtraction, division, and multiplication are [9.12]:

 A
!
# B

!
= 1a1b1 - a2b22 + i1a2b1 + a1b22

 
A
!

B
! =

(a1b1 + a2b2) + i(a2b1 - a1b2)

(b1
2 + b2

2)

 A
!
- B

!
= 1a1 - b12 + i1a2 - b22

b2 = b sin uB.
b1 = b cos uB,a2 = a sin uA,a1 = a cos uA,B

!
= b1 + ib2,A

!
= a1 + ia2B

!
A
!

A
!
= aluA and B

!
= bluB
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782 CHAPTER 9 VIBRATION CONTROL

(9.18)

We then remove and add a known weight in the right plane at a known angular

position and measure the resulting vibrations while the rotor is running at speed The

measured vibrations can be denoted as vectors:

(9.19)

(9.20)

As before, we subtract Eqs. (9.13) and (9.14) from Eqs. (9.19) and (9.20), respectively,

to find

(9.21)

(9.22)

Once the vector operators are known, Eqs. (9.13) and (9.14) can be solved to find the

unbalance vectors and 

(9.23)

(9.24)

The rotor can now be balanced by adding equal and opposite balancing weights in

each plane. The balancing weights in the left and right planes can be denoted vectori-

ally as and It can be seen that the two-plane balancing proce-

dure is a straightforward extension of the single-plane balancing procedure. Although

high-speed rotors are balanced during manufacture, usually it becomes necessary to

rebalance them in the field due to slight unbalances introduced due to creep, high-

temperature operation, and the like. Figure 9.10 shows a practical example of two-plane

balancing.

B
!

R = -  U
!

R.B
!

L = -  U
!

L

 U
!

R =
A
!

BLV
!

A - A
!

ALV
!

B

A
!

BLA
!

AR - A
!

ALA
!

BR

 U
!

L =
A
!

BRV
!

A - A
!

ARV
!

B

A
!

BRA
!

AL - A
!

ARA
!

BL

U
!

R:U
!

L

A
!

ij

 A
!

BR =
V
!

B - V
!

B

W
!

R

 A
!

AR =
V
!

A - V
!

A

W
!

R

 V
!

B = A
!

BR1U
!

R + W
!

R2 + A
!

BLU
!

L

 V
!

A = A
!

AR1U
!

R + W
!

R2 + A
!

ALU
!

L

v.

W
!

RW
!

L

 A
!

BL =
V
!

B - V
!

B

W
!

L
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E X A M P L E  9 . 2

FIGURE 9.10 Two-plane balancing. (Courtesy of Bruel and Kjaer Instruments, Inc., Marl-

borough, MA.)

Two-Plane Balancing of Turbine Rotor

In the two-plane balancing of a turbine rotor, the data obtained from measurement of the original

unbalance, the right-plane trial weight, and the left-plane trial weight are shown below. The dis-

placement amplitudes are in mils (1/1000 inch.) Determine the size and location of the balance

weights required.

Condition

Vibration (Displacement) 

Amplitude Phase Angle

At Bearing A At Bearing B At Bearing A At Bearing B

Original unbalance 8.5 6.5 60° 205°

added 

at 270° from 

reference mark

WL = 10.0 oz 6.0 4.5 125° 230°

added 

at 180° from 

reference mark

WR = 12.0 oz 6.0 10.5 35° 160°
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Solution: The given data can be expressed in vector notation as

Equations (9.17) and (9.18) give

The use of Eqs. (9.21) and (9.22) leads to

The unbalance weights can be determined from Eqs. (9.23) and (9.24):

Thus the required balance weights are given by

 B

!

R = -  U

!

R = 12.1773 + i5.45922 = 5.8774l248.2559°

 B

!

L = -  U

!

L = 18.2930 - i5.68792 = 10.0561l145.5548°

 = -  2.1773 - i5.4592

 U

!

R =
1-1.9096 + i1.78982 - 13.5540 + i3.85902

1-  0.1018 + i0.00632 - 1-  0.3252 - i0.38402
=

11.6443 - i2.06932

10.2234 + i0.39032

 = -8.2930 + i5.6879

 U

!

L =
15.2962 + i0.19412 - 11.2237 - i1.77212

1-  0.3252 - i0.38402 - 1-  0.1018 + i0.00632
=

14.0725 + i1.96612

1-  0.2234 - i0.39032

 A

!

BR =
V

!

B - V

!

B

W

!

R

=
-  3.9758 + i6.3382

-12.0000 + i0.0000
= 0.3313 - i0.5282

 A

!

AR =
V

!

A - V

!

A

W

!

R

=
0.6649 - i3.9198

-  12.0000 + i0.0000
= -  0.0554 + i0.3266

 A

!

BL =
V

!

B - V

!

B

W

!

L

=
2.9985 - i0.7002

0.0000 - i10.0000
= 0.0700 + i0.2998

 A

!

AL =
V

!

A - V

!

A

W

!

L

=
-  7.6915 - i2.4463

0.0000 - i10.0000
= 0.2446 - i0.7691

 W

!

R = 12.0l180° = -  12.0000 + i0.0000

 W

!

L = 10.0l270° = 0.0000 - i10.0000

 V

!

B = 10.5l160° = -  9.8668 + i3.5912

 V

!

A = 6.0l35° = 4.9149 + i3.4472

 V

!

B = 4.5l230° = -  2.8926 - i3.4472

 V

!

A = 6.0l125° = -  3.4415 + i4.9149

 V

!

B = 6.5l205° = -  5.8910 - i2.7470

 V

!

A = 8.5l60° = 4.2500 + i7.3612
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This shows that the addition of a 10.0561-oz weight in the left plane at 145.5548° and a 5.8774-oz

weight in the right plane at 248.2559° from the reference position will balance the turbine rotor. It is

implied that the balance weights are added at the same radial distance as the trial weights. If a bal-

ance weight is to be located at a different radial position, the required balance weight is to be modi-

fied in inverse proportion to the radial distance from the axis of rotation.

*

9.5 Whirling of Rotating Shafts
In the previous section, the rotor system the shaft as well as the rotating body was

assumed to be rigid. However, in many practical applications, such as turbines, compres-

sors, electric motors, and pumps, a heavy rotor is mounted on a lightweight, flexible shaft

that is supported in bearings. There will be unbalance in all rotors due to manufacturing

errors. These unbalances as well as other effects, such as the stiffness and damping of the

shaft, gyroscopic effects, and fluid friction in bearings, will cause a shaft to bend in a com-

plicated manner at certain rotational speeds, known as the whirling, whipping, or critical

speeds. Whirling is defined as the rotation of the plane made by the line of centers of the

bearings and the bent shaft. We consider the aspects of modeling the rotor system, critical

speeds, response of the system, and stability in this section [9.13 9.14].

9.5.1
Equations of
Motion

Consider a shaft supported by two bearings and carrying a rotor or disc of mass m at the

middle, as shown in Fig. 9.11. We shall assume that the rotor is subjected to a steady-state

excitation due to mass unbalance. The forces acting on the rotor are the inertia force due to

the acceleration of the mass center, the spring force due to the elasticity of the shaft, and

the external and internal damping forces.3

3Any rotating system responds in two different ways to damping or friction forces, depending upon whether the

forces rotate with the shaft or not. When the positions at which the forces act remain fixed in space, as in the case

of damping forces (which cause energy losses) in the bearing support structure, the damping is called stationary

or external damping. On the other hand, if the positions at which they act rotate with the shaft in space, as in the

case of internal friction of the shaft material, the damping is called rotary or internal damping.

y

x

O

C

Rotor or disc Shaft

FIGURE 9.11 Shaft carrying a rotor.
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786 CHAPTER 9 VIBRATION CONTROL

Let O denote the equilibrium position of the shaft when balanced perfectly, as shown

in Fig. 9.12. The shaft (line CG) is assumed to rotate with a constant angular velocity 

During rotation, the rotor deflects radially by a distance (in steady state). The

rotor (disc) is assumed to have an eccentricity a so that its mass center (center of gravity)

G is at a distance a from the geometric center, C. We use a fixed coordinate system (x and

y fixed to the earth) with O as the origin for describing the motion of the system. The angu-

lar velocity of the line OC, is known as the whirling speed and, in general, is

not equal to The equations of motion of the rotor (mass m) can be written as

(9.25)

The various forces in Eq. (9.25) can be expressed as follows:

(9.26)

where denotes the radius vector of the mass center G given by

(9.27)

with x and y representing the coordinates of the geometric center C and and denoting

the unit vectors along the x and y coordinates, respectively. Equations (9.26) and (9.27)

lead to

(9.28)

(9.29) Elastic force: F
!

e = -k1xi
!
+ yj

!
2

 F
!

i = m[1x
$

- av2 cos vt2i
!
+ 1y

$
- av2 sin vt2j

!
]

j
!

i
!

R
!

= 1x + a cos vt2i
!

+ 1y + a sin vt2j
!

R
!

Inertia force: F
!

i = mR
$!

 + External damping force 1F
!

de2

 + Internal damping force 1F
!

di2

 Inertia force 1F
!

i2 = Elastic force 1F
!

e2

v.
u
 #

= du/dt,

A = OC
v.

a sin vt

Rotor in displaced
condition

a cos vt

a

vt
f

u

G

x

y R
C

O

A

x(i)

y( j)

FIGURE 9.12 Rotor with eccentricity.
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9.5 WHIRLING OF ROTATING SHAFTS 787

where k is the stiffness of the shaft.

(9.30)

where is the internal or rotary damping coefficient:

(9.31)

where c is the external damping coefficient. By substituting Eqs. (9.28) to (9.31) into

Eq. (9.25), we obtain the equations of motion in scalar form:

(9.32)

(9.33)

These equations of motion, which describe the lateral vibration of the rotor, are coupled

and are dependent on the speed of the steady-state rotation of the shaft, By defining a

complex quantity w as

(9.34)

where and by adding Eq. (9.32) to Eq. (9.33) multiplied by i, we obtain a sin-

gle equation of motion:

(9.35)mw
$

+ 1ci + c2w
#

+ kw - ivciw = mv2a eivt

i = 1-121/2,

w = x + iy

v.

 my
$

+ 1ci + c2y
#
+ ky - ci 

vx = mv2a sin vt

 mx
$

+ 1ci + c2x
#
+ kx - civy = mv2a cos vt

External damping force: F
!

de = -c1x
#
i
!
+ y

#
j
!
2

ci

Internal damping force: F
!

di = -ci [1x
#
+ vy2i

!
+ 1y

#
+ vx2j

!
]

9.5.2
Critical Speeds

A critical speed is said to exist when the frequency of the rotation of a shaft equals one of

the natural frequencies of the shaft. The undamped natural frequency of the rotor system

can be obtained by solving Eqs. (9.32), (9.33), or (9.35), retaining only the homogeneous

part with This gives the natural frequency of the system (or critical speed of

the undamped system):

(9.36)

When the rotational speed is equal to this critical speed, the rotor undergoes large deflec-

tions, and the force transmitted to the bearings can cause bearing failures. A rapid transition

of the rotating shaft through a critical speed is expected to limit the whirl amplitudes, while

a slow transition through the critical speed aids the development of large amplitudes. Refer-

ence [9.15] investigates the behavior of the rotor during acceleration and deceleration

through critical speeds. A FORTRAN computer program for calculating the critical speeds

of rotating shafts is given in reference [9.16].

vn = a
k

m
b

1/   2

ci = c = 0.

M09_RAO08193_5_SE_C09.qxd  8/22/10  1:01 PM  Page 787



788 CHAPTER 9 VIBRATION CONTROL

9.5.3
Response of the
System

To determine the response of the rotor, we assume the excitation to be a harmonic force

due to the unbalance of the rotor. In addition, we assume the internal damping to be negli-

gible Then, we can solve Eqs. (9.32) and (9.33) (or equivalently, Eq. (9.35)) and

find the rotor s dynamic whirl amplitudes resulting from the mass unbalance. With 

Eq. (9.35) reduces to

(9.37)

The solution of Eq. (9.37) can be expressed as

(9.38)

where and are constants. Note that the first term on the right-hand side of

Eq. (9.38) contains a decaying exponential term representing a transient solution and the

second term denotes a steady-state circular motion (whirl). By substituting the steady-state

part of Eq. (9.38) into Eq. (9.37), we can find the amplitude of the circular motion (whirl) as

(9.39)

and the phase angle as

(9.40)

where

By differentiating Eq. (9.39) with respect to and setting the result equal to zero, we can

find the rotational speed at which the whirl amplitude becomes a maximum:

(9.41)

where is given by Eq. (9.36). It can be seen that the critical speed corresponds exactly

to the natural frequency only when the damping (c) is zero. Furthermore, Eq. (9.41)

shows that the presence of damping, in general, increases the value of the critical speed

compared to A plot of Eqs. (9.39) and (9.40) is shown in Fig. 9.13 [9.14]. Since the

forcing function is proportional to we normally expect the vibration amplitude to

increase with the speed However, the actual amplitude appears as shown in Fig. 9.13.

From Eq. (9.39), we note that the amplitude of circular whirl A at low speeds is determined

v.

v2,

vn.

vn

vn

v L
vn

21 - 2z2

v

v

r =
v

vn

,  vn = A
k

m
,  and  z =

c

22km
.

f = tan-1
a

cv

k - mv2
b = tan-1 a

2zr

1 - r2
b

A =
mv2a

[(k - mv2)2
+ v2c2]1/  2

=
ar2

[(1 - r2)2
+ (2zr)2]1/   2

fC, b, A,

w(t) = Ce- 
(at+b)

+ Aei(vt-f)

mw
$

+ cw
#
+ kw = mv2aeivt

ci = 0,

1ci = 02.
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9.5 WHIRLING OF ROTATING SHAFTS 789

by the spring constant k, since the other two terms, and are small. Also, the

value of the phase angle can be seen to be 0° from Eq. (9.40) for small values of As 

increases, the amplitude of the response reaches a peak, since resonance occurs at

Around resonance, the response is essentially limited by the damping term.

The phase lag is 90° at resonance. As the speed increases beyond the response is

dominated by the mass term in Eq. (9.39). Since this term is 180° out of phase with

the unbalanced force, the shaft rotates in a direction opposite to that of the unbalanced

force, hence the response of the shaft will be limited.

Notes

1. Equation (9.38) implicitly assumes a condition of forward synchronous whirl under

steady state (that is, ). As a general case, if the steady-state solution of Eq. (9.37)

is assumed as the solution can be obtained as with

representing the forward synchronous whirl and denoting a back-

ward synchronous whirl. For simple rotors, such as the one shown in Fig. 9.11, only

forward synchronous whirl occurs in practice.

2. To determine the bearing reactions, we first find the deflection of the mass center of

the disc from the bearing axis, R in Fig. 9.12, as

(9.42)R2
= A2

+ a2
+ 2Aa cos f

g = -  vg = +v

g = ;v,w(t) = Aei(gt-f),

u
#

= v

m2v4
vn,v

k - mv2
= 0.

vv.f

c2v2,mv2

Spring
(k)

dominates

Mass
(m)

dominates
Damping

(c)
controls

Resonance

0 

90 

180 

P
h

a
se

 l
a
g
, 
f

A
m

p
li

tu
d

e
, 

*
A

*

O
v

FIGURE 9.13 Plots of Eqs. (9.39) 

and (9.40).

M09_RAO08193_5_SE_C09.qxd  8/22/10  1:01 PM  Page 789



790 CHAPTER 9 VIBRATION CONTROL

In view of Eqs. (9.39) and (9.40), Eq. (9.42) can be rewritten as

(9.43)

The bearing reactions can then be determined from the centrifugal force, The vibra-

tion and balancing of unbalanced flexible rotors are presented in references [9.17, 9.18].

m v2
 R.

R = a c
1 + 12zr22

11 - r2
2

2
+ 12zr22

d

1/   2

9.5.4
Stability
Analysis

Instability in a flexible rotor system can occur due to several factors like internal friction,

eccentricity of the rotor, and the oil whip in the bearings. As seen earlier, the stability of the

system can be investigated by considering the equation governing the dynamics of the sys-

tem. Assuming the characteristic equation corresponding to the homogeneous

part of Eq. (9.35) can be written as

(9.44)

With Eq. (9.44) becomes

(9.45)

This equation is a particular case of the more general equation

(9.46)

A necessary and sufficient condition for the system governed by Eq. (9.46) to be stable,

according to Routh-Hurwitz criterion, is that the following inequalities are satisfied:

(9.47)

and

(9.48)

Noting that and from

Eq. (9.45), the application of Eqs. (9.47) and (9.48) leads to

(9.49)

and

(9.50)km1ci + c2
2
- m2

1v2ci
2
2 7 0

m1ci + c2 7 0

q0 = -
 
vci,p0 = k,q1 = ci + c,p1 = 0,q2 = 0,p2 = -m,

4

p2 p1 p0 0

q2 q1 q0 0

0 p2 p1 p0

0 q2 q1 q0

4 7 0

- `

p2 p1

q2 q1
` 7 0

1p2 + iq22l
2
+ 1p1 + iq12l + 1p0 + iq02 = 0

-  ml2
+ 1ci + c2il + k - ivci = 0

s = il,

ms2
+ 1ci + c2s + k - ivci = 0

w(t) = est,
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Equation (9.49) is automatically satisfied, while Eq. (9.50) yields the condition

(9.51)

This equation also shows that internal and external friction can cause instability at rotating

speeds above the first critical speed of v = A
k

m
.

A
k

m
 a1 +

c

ci

b - v 7 0

E X A M P L E  9 . 3
Whirl Amplitude of a Shaft Carrying an Unbalanced Rotor

A shaft, carrying a rotor of weight 100 lb and eccentricity 0.1 in., rotates at 1200 rpm. Determine

(a) the steady-state whirl amplitude and (b) the maximum whirl amplitude during start-up conditions

of the system. Assume the stiffness of the shaft as and the external damping ratio as 0.1.

Solution: The forcing frequency of the rotor (rotational speed of the shaft) is given by

The natural frequency of the system can be determined as

and the frequency ratio as

(a) The steady-state amplitude is given by Eq. (9.39):

(E.1)

(E.2)

(b) During start-up conditions, the frequency (speed) of the rotor, passes through the natural fre-

quency of the system. Thus, using in Eq. (E.1), we obtain the whirl amplitude as

*

A r=1 =
a

2z
=

0.1

210.12
= 0.5 in.

r = 1

v,

 =
10.1211.429522

411 - 1.42952
2

2 + 12 * 0.1 * 1.429522
= 0.18887 in.

 A =
ar2

411 - r2
2

2 + 12zr22

r =
v

vn

=
125.6640

87.9090
= 1.4295

vn = A
k

m
= C

2.0 * 105

1100/386.42
= 87.9090 rad/s

v =
1200 * 2p

60
= 40p = 125.6640 rad/s

2 * 105 lb/in.
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9.6 Balancing of Reciprocating Engines
The essential moving elements of a reciprocating engine are the piston, the crank, and the

connecting rod. Vibrations in reciprocating engines arise due to (1) periodic variations of

the gas pressure in the cylinder and (2) inertia forces associated with the moving parts

[9.19]. We shall now analyze a reciprocating engine and find the unbalanced forces caused

by these factors.

9.6.1
Unbalanced
Forces Due to
Fluctuations in
Gas Pressure

Figure 9.14(a) is a schematic diagram of a cylinder of a reciprocating engine. The engine

is driven by the expanding gas in the cylinder. The expanding gas exerts on the piston a

pressure force F, which is transmitted to the crankshaft through the connecting rod. The

reaction to the force F can be resolved into two components: one of magnitude 

acting along the connecting rod, and the other of magnitude acting in a horizontal

direction. The force induces a torque which tends to rotate the crankshaft. (In

Fig. 9.14(b), acts about an axis perpendicular to the plane of the paper and passes

through point Q.)

(9.52)Mt = a
F

cos f
b  r cos u

Mt

Mt,F/cos f
F tan f,

F/cos f,

h

r

F

P F tan f

(a) (b) (c)

P

F tan f

u

F tan f

cos f

f

F

cos f
F

cos f
F

Q Q

F
F

F

F tan f

FIGURE 9.14 Forces in a reciprocating engine.
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9.6 BALANCING OF RECIPROCATING ENGINES 793

For force equilibrium of the overall system, the forces at the bearings of the crankshaft will

be F in the vertical direction and in the horizontal direction.

Thus the forces transmitted to the stationary parts of the engine are as follows:

1. Force F acting upward at the cylinder head

2. Force acting toward the right at the cylinder head

3. Force F acting downward at the crankshaft bearing Q

4. Force acting toward the left at the crankshaft bearing

These forces are shown in Fig. 9.14(c). Although the total resultant force is zero, there is a

resultant torque on the body of the engine, where h can be found from the

geometry of the system:

(9.53)

Thus the resultant torque is given by

(9.54)

As expected, and given by Eqs. (9.52) and (9.54) can be seen to be identical, which

indicates that the torque induced on the crankshaft due to the gas pressure on the piston is

felt at the support of the engine. Since the magnitude of the gas force F varies with time,

the torque also varies with time. The magnitude of force F changes from a maximum

to a minimum at a frequency governed by the number of cylinders in the engine, the type

of the operating cycle, and the rotating speed of the engine.

MQ

MQMt

MQ =
Fr cos u

cos f

h =
r cos u

sin f

MQ = Fh tan f

F tan f

F tan f

F tan f

9.6.2
Unbalanced
Forces Due to
Inertia of the
Moving Parts

Acceleration of the Piston. Figure 9.15 shows the crank (of length r), the connecting

rod (of length l), and the piston of a reciprocating engine. The crank is assumed to rotate in

an anticlockwise direction at a constant angular speed of as shown in Fig. 9.15. If we

consider the origin of the x-axis (O) as the uppermost position of the piston, the

displacement of the piston P corresponding to an angular displacement of the crank of

can be expressed as in Fig. 9.15. The displacement of the piston P corresponding

to an angular displacement of the crank from its topmost position (origin O) can be

expressed as

(9.55)

But

(9.56)l sin f = r sin u = r sin vt

 = r + l - r cos vt - l41 - sin2 f

 xp = r + l - r cos u - l cos f

u = vt

u = vt

v,
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and hence

(9.57)

By substituting Eq. (9.57) into Eq. (9.55), we obtain

(9.58)

Due to the presence of the term involving the square root, Eq. (9.58) is not very convenient

in further calculation. Equation (9.58) can be simplified by noting that, in general, 

and by using the expansion relation

(9.59)21 - e M 1 -
e

2

r/l 6
1

4

xp = r + l - r cos vt - lC1 -
r

2

l
2
 sin2

 vt

cos f = a1 -
r

2

l
2

 sin2vtb

1/  2

u  vt

v

x

y

r

Q

B

A

O

l

C

xp

P

f

FIGURE 9.15 Motions of crank,

connecting rod, and piston.
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Hence Eq. (9.58) can be approximated as

(9.60)

or, equivalently,

(9.61)

Equation (9.61) can be differentiated with respect to time to obtain expressions for the

velocity and the acceleration of the piston:

(9.62)

(9.63)

Acceleration of the Crankpin. With respect to the xy coordinate axes shown in Fig.

9.15, the vertical and horizontal displacements of the crankpin C are given by

(9.64)

(9.65)

Differentiation of Eqs. (9.64) and (9.65) with respect to time gives the velocity and accel-

eration components of the crankpin as

(9.66)

(9.67)

(9.68)

(9.69)

Inertia Forces. Although the mass of the connecting rod is distributed throughout its

length, it is generally idealized as a massless link with two masses concentrated at its

ends the piston end and the crankpin end. If and denote the total mass of the

piston and of the crankpin (including the concentrated mass of the connecting rod)

respectively, the vertical component of the inertia force for one cylinder is given by

(9.70)Fx = mpx
$

p + mcx
$

c

1Fx2

mcmp

 y 
$

c = -rv2 sin vt

 x 
$

c = rv2 cos vt

 y
#

c = rv cos vt

 x 
#

c = rv sin vt

 yc = CB = r sin vt

 xc = OA + AB = l + r11 - cos vt2

 x
$

p = rv2
acos vt +

r

l
 cos 2vtb

 x
#

p = rvasin vt +
r

2l
 sin 2vtb

xp = ra1 +
r

2l
b - racos vt +

r

4l
 cos 2vtb

xp M r11 - cos vt2 +
r2

2l
 sin2

vt
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By substituting Eqs. (9.63) and (9.68) for the accelerations of P and C, Eq. (9.70) becomes

(9.71)

It can be observed that the vertical component of the inertia force consists of two parts.

One part, known as the primary part, has a frequency equal to the rotational frequency of

the crank The other part, known as the secondary part, has a frequency equal to twice

the rotational frequency of the crank.

Similarly, the horizontal component of inertia force for a cylinder can be obtained

(9.72)

where and is given by Eq. (9.69). Thus

(9.73)

The horizontal component of the inertia force can be observed to have only a primary part.

Fy = -
 
mcrv

2 sin vt

y
$

cy
$

p = 0

Fy = mpy
$

p + mcy
$

c

v.

Fx = 1mp + mc2rv2 cos vt + mp 

r2
v

2

l
 cos 2vt

9.6.3
Balancing of
Reciprocating
Engines

The unbalanced or inertia forces on a single cylinder are given by Eqs. (9.71) and (9.73). In

these equations, and represent the equivalent reciprocating and rotating masses,

respectively. The mass is always positive, but can be made zero by counterbalancing

the crank. It is therefore possible to reduce the horizontal inertia force to zero, but the ver-

tical unbalanced force always exists. Thus a single-cylinder engine is inherently unbalanced.

In a multicylinder engine, it is possible to balance some or all of the inertia forces and

torques by proper arrangement of the cranks. Figure 9.16(a) shows the general arrange-

ment of an N-cylinder engine (only six cylinders, are shown in the figure). The

lengths of all the cranks and connecting rods are assumed to be r and l, respectively, and

the angular velocity of all the cranks is taken to be a constant, The axial displacement

and angular orientation of ith cylinder from those of the first cylinder are assumed to be 

and respectively; For force balance, the total inertia force in the x and

y directions must be zero. Thus

(9.74)

(9.75)

where and are the vertical and horizontal components of inertia force of cylin-

der i given by (see Eqs. (9.71) and (9.73)):

(9.76)

(9.77) 1Fy2i = -  1mc2i 
rv2 sin1vt + ai2

 1Fx2i = 1mp + mc2irv
2 cos1vt + ai2 + 1mp2i 

r2
v

2

l
 cos12vt + 2ai2

(Fy)i(Fx)i

 1Fy2total = a
N

i=1
1Fy2i = 0

 1Fx2total = a
N

i=1
1Fx2i = 0

i = 2, 3, Á , N.li,
ai

v.

N = 6,

Fy

mcmp

mcmp
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For simplicity, we assume the reciprocating and rotating masses for each cylinder to be

same that is, and for Without loss of general-

ity, Eqs. (9.74) and (9.75) can be applied at time Thus the conditions necessary for

the total force balance are given by

(9.78)

(9.79)

The inertia forces and of the i th cylinder induce moments about the y- and x-axes,

respectively, as shown in Fig. 9.16(b). The moments about the z- and x-axes are given by

(9.80)

(9.81) Mx = a
N

i=2
 1Fy2ili = 0

 Mz = a
N

i=2
 1Fx2ili = 0

(Fy)i(Fx)i

a
N

i=1
 sin ai = 0

a
N

i=1
 cos ai = 0 and a

N

i=1
 cos 2ai = 0

t = 0.
i = 1, 2, Á , N.(mc)i = mc(mp)i = mp

2

(b)

(a)

1
1

a3

a6

6

3

5

4

x

x

x
(Fx)i

(Fy)i

O

yz
O

z

y

2

Reference plane

3 4 5 6

l2
l3

l4
l5

l6

Cylinder iCylinder 1

li

FIGURE 9.16 Arrangement of an N-cylinder engine.
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By substituting Eqs. (9.76) and (9.77) into Eqs. (9.80) and (9.81) and assuming we

obtain the necessary conditions to be satisfied for the balancing of moments about the z-

and x-axes as

(9.82)

(9.83)

Thus we can arrange the cylinders of a multicylinder reciprocating engine so as to satisfy

Eqs. (9.78), (9.79), (9.82), and (9.83); it will be completely balanced against the inertia

forces and moments.

9.7 Control of Vibration
In many practical situations, it is possible to reduce but not eliminate the dynamic forces

that cause vibrations. Several methods can be used to control vibrations. Among them, the

following are important:

1. Controlling the natural frequencies of the system and avoiding resonance under exter-

nal excitations.

2. Preventing excessive response of the system, even at resonance, by introducing a

damping or energy-dissipating mechanism.

3. Reducing the transmission of the excitation forces from one part of the machine to

another by the use of vibration isolators.

4. Reducing the response of the system by the addition of an auxiliary mass neutralizer

or vibration absorber.

We shall now consider the details of these methods.

9.8 Control of Natural Frequencies
It is well known that whenever the frequency of excitation coincides with one of the nat-

ural frequencies of the system, resonance occurs. The most prominent feature of resonance

is a large displacement. In most mechanical and structural systems, large displacements

indicate undesirably large strains and stresses, which can lead to the failure of the system.

Hence in any system resonance conditions must be avoided. In most cases, the excitation

frequency cannot be controlled, because it is imposed by the functional requirements of the

system or machine. We must concentrate on controlling the natural frequencies of the sys-

tem to avoid resonance.

a
N

i=2

 li sin ai = 0

a
N

i=2

 li cos ai = 0 and a
N

i=2

 li cos 2ai = 0

t = 0,
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As indicated by Eq. (2.14), the natural frequency of a system can be changed by vary-

ing either the mass m or the stiffness k.4 In many practical cases, however, the mass cannot

be changed easily, since its value is determined by the functional requirements of the sys-

tem. For example, the mass of a flywheel on a shaft is determined by the amount of energy

it must store in one cycle. Therefore, the stiffness of the system is the factor that is most

often changed to alter its natural frequencies. For example, the stiffness of a rotating shaft

can be altered by varying one or more of its parameters, such as materials or the number

and location of support points (bearings).

9.9 Introduction of Damping
Although damping is disregarded so as to simplify the analysis, especially in finding the

natural frequencies, most systems possess damping to some extent. The presence of damp-

ing is helpful in many cases. In systems such as automobile shock absorbers and many

vibration-measuring instruments, damping must be introduced to fulfill the functional

requirements [9.20 9.21].

If the system undergoes forced vibration, its response or amplitude of vibration tends

to become large near resonance if there is no damping. The presence of damping always

limits the amplitude of vibration. If the forcing frequency is known, it may be possible to

avoid resonance by changing the natural frequency of the system. However, the system or

the machine may be required to operate over a range of speeds, as in the case of a variable-

speed electric motor or an internal combustion engine. It may not be possible to avoid res-

onance under all operating conditions. In such cases, we can introduce damping into the

system to control its response, by the use of structural materials having high internal damp-

ing, such as cast iron or laminated or sandwich materials.

In some structural applications, damping is introduced through joints. For example,

bolted and riveted joints, which permit slip between surfaces, dissipate more energy com-

pared to welded joints, which do not permit slip. Hence a bolted or riveted joint is desirable

to increase the damping of the structure. However, bolted and riveted joints reduce the stiff-

ness of the structure, produce debris due to joint slip, and cause fretting corrosion. In spite of

this, if a highly damped structure is desired, bolted or riveted joints should not be ignored.

4Although this statement is made with reference to a single-degree-of-freedom system, it is generally true even

for multidegree-of-freedom and continuous systems.

Use of Viscoelastic Materials. The equation of motion of a single-degree-of-freedom

system with internal damping, under harmonic excitation can be expressed as

(9.84)

where is called the loss factor (or loss coefficient), which is defined as (see Section 2.6.4)

(9.85)

h =
1¢W/2p2

W
= a

Energy dissipated during 1 cycle of harmonic displacement/radian

Maximum strain energy in cycle
b

h

mx
$
+ k11 + ih2x = F0e

ivt

F(t) = F0e
ivt,
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The amplitude of the response of the system at resonance is given by

(9.86)

since the stiffness is proportional to the Young s modulus 

The viscoelastic materials have larger values of the loss factor and hence are used to

provide internal damping. When viscoelastic materials are used for vibration control, they

are subjected to shear or direct strains. In the simplest arrangement, a layer of viscoelastic

material is attached to an elastic one. In another arrangement, a viscoelastic layer is sand-

wiched between the elastic layers. This arrangement is known as constrained layer damp-

ing.5 Damping tapes, consisting of thin metal foil covered with a viscoelastic adhesive, are

used on existing vibrating structures. A disadvantage with the use of viscoelastic materials

is that their properties change with temperature, frequency, and strain. Equation (9.86)

shows that a material with the highest value of gives the smallest resonance ampli-

tude. Since the strain is proportional to the displacement x and the stress is proportional to

Ex, the material with the largest value of the loss factor will be subjected to the smallest

stresses. The values of loss coefficient for some materials are given below:

(Eh)

(k = aE; a = constant).

F0

kh
=

F0

aEh

(v = vn)

5It appears that constrained layer damping was used, possibly unknowingly, as far back as the seventeenth century,

in the manufacture of violins [9.22]. Antonio Stradivari (1644 1737), the renowned Italian violin manufacturer,

bought the wood necessary for the manufacture of violins from Venice. The varnish used for sealing the wood was

made from a mixture of resin and ground gem stones. This varnish stone particles in resin matrix acted as a

form of constrained layer (friction mechanism) that created enough damping to explain why many of his violins

had a rich, full tone.

Material Loss Factor (H)

Polystyrene 2.0

Hard rubber 1.0

Fiber mats with matrix 0.1

Cork 0.13 0.17

Aluminum 1 * 10-4

Iron and steel 2-6 * 10-4

The damping ratios obtainable with different types of construction/arrangement are

indicated below:

Type of Construction/Arrangement

Equivalent Viscous Damping 

Ratio (%)

Welded construction 1 4

Bolted construction 3 10

Steel frame 5 6

Unconstrained viscoelastic layer on steel-concrete girder 4 5

Constrained viscoelastic layer on steel-concrete girder 5 8
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9.10 Vibration Isolation

Vibration isolation is a procedure by which the undesirable effects of vibration are reduced

[9.22 9.24]. Basically, it involves the insertion of a resilient member (or isolator) between

the vibrating mass (or equipment or payload) and the source of vibration so that a reduction

in the dynamic response of the system is achieved under specified conditions of vibration

excitation. An isolation system is said to be active or passive depending on whether or not

external power is required for the isolator to perform its function. A passive isolator consists

of a resilient member (stiffness) and an energy dissipator (damping). Examples of passive

isolators include metal springs, cork, felt, pneumatic springs, and elastomer (rubber)

springs. Figure 9.17 shows typical spring and pneumatic mounts that can be used as pas-

sive isolators, and Fig. 9.18 illustrates the use of passive isolators in the mounting of a

high-speed punch press [9.25]. The optimal synthesis of vibration isolators is presented in

references [9.26 9.30]. An active isolator is comprised of a servomechanism with a sensor,

signal processor, and actuator.

(a)

(c)

(b)

FIGURE 9.17 (a) Undamped spring mount; (b) damped spring mount; (c) pneumatic

rubber mount. (Courtesy of Sound and Vibration.)
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FIGURE 9.18 High-speed punch press mounted

on pneumatic rubber mounts. (Courtesy of Sound and

Vibration.)

Vibration isolation can be used in two types of situations. In the first type, the founda-

tion or base of a vibrating machine is protected against large unbalanced forces. In the sec-

ond type, the system is protected against the motion of its foundation or base.

The first type of isolation is used when a mass (or a machine) is subjected to a force or

excitation. For example, in forging and stamping presses, large impulsive forces act on the

object to be formed or stamped. These impacts are transmitted to the base or foundation of

the forging or stamping machine, which can damage not only the base or foundation but

also the surrounding or nearby structures and machines. They can also cause discomfort to

operators of these machines. Similarly, in the case of reciprocating and rotating machines,

the inherent unbalanced forces are transmitted to the base or foundation of the machine.

In such cases, the force transmitted to the base, varies harmonically, and the result-

ing stresses in the foundation bolts also vary harmonically, which might lead to fatigue

Ft(t),
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9.10 VIBRATION ISOLATION 803

failure. Even if the force transmitted is not harmonic, its magnitude is to be limited to safe

permissible values. In these applications, we can insert an isolator (in the form of stiffness

and/or damping) between the mass being subjected to force or excitation and the base or

foundation to reduce the force transmitted to the base or foundation. This is called force

isolation. In many applications, the isolator is also intended to reduce the vibratory

motion of the mass under the applied force (as in the case of forging or stamping

machines). Thus both force and displacement transmissibilities become important for this

of isolators.

The second type of isolation is used when a mass to be protected against the motion or

excitation of its base or foundation. When the base is subjected to vibration, the mass m

will experience not only a displacement x(t) but also a force The displacement of the

mass x(t) is expected to be smaller than the displacement of the base y(t). For example, a

delicate instrument or equipment is to be protected from the motion of its container or

package (as when the vehicle carrying the package experiences vibration while moving on

a rough road). The force transmitted to the mass also needs to be reduced. For example, the

package or container is to be designed properly to avoid transmission of large forces to the

delicate instrument inside to avoid damage. The force experienced by the instrument or

mass m (same as the force transmitted to mass m) is given by

(9.87)

where y(t) is the displacement of the base, is the relative displacement of the

spring, and is the relative velocity of the damper. In such cases, we can insert

an isolator (which provides stiffness and /or damping) between the base being subjected to

force or excitation and the mass to reduce the motion and/or force transmitted to the mass.

Thus both displacement isolation and force isolation become important in this case also.

It is to be noted that the effectiveness of an isolator depends on the nature of the force

or excitation. For example, an isolator designed to reduce the force transmitted to the base

or foundation due to impact forces of forging or stamping may not be effective if the distur-

bance is a harmonic unbalanced force. Similarly, an isolator designed to handle harmonic

excitation at a particular frequency may not be effective for other frequencies or other types

of excitation such as step-type excitation.

x
#
(t) - y

#
(t)

x(t) - y(t)

Ft(t) = mx
$
(t) = k5x(t) - y(t)6 + c5x

#
(t) - y

#
(t)6

Ft(t).

(a)

k c
Rigid base or
foundation

m
Vibrating
machine

x(t)

(b)

k c

Base
(package)

m
Delicate
instrument
or machine

x(t)

y(t)

FIGURE 9.19 Vibration isolation.
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9.10.1
Vibration
Isolation System
with Rigid
Foundation

Reduction of the Force Transmitted to Foundation. When a machine is bolted directly

to a rigid foundation or floor, the foundation will be subjected to a harmonic load due to

the unbalance in the machine in addition to the static load due to the weight of the

machine. Hence an elastic or resilient member is placed between the machine and the rigid

foundation to reduce the force transmitted to the foundation. The system can then be

idealized as a single-degree-of-freedom system, as shown in Fig. 9.20(a). The resilient

member is assumed to have both elasticity and damping and is modeled as a spring k and a

dashpot c, as shown in Fig. 9.20(b). It is assumed that the operation of the machine gives

rise to a harmonically varying force The equation of motion of the

machine (of mass m) is given by

(9.88)

Since the transient solution dies out after some time, only the steady-state solution will be

left. The steady-state solution of Eq. (9.88) is given by (see Eq. (3.25))

(9.89)

where

(9.90)

and

(9.91)

The force transmitted to the foundation through the spring and the dashpot, is given by

(9.92)Ft1t2 = kx1t2 + cx 
#
1t2 = kX cos1vt - f2 - cvX sin1vt - f2

Ft(t),

f = tan-1 a
vc

k - mv2
b

X =
F0

[(k - mv2)2
+ v2c2]1/  2

x1t2 = X cos 1vt - f2

mx 
$
+ cx 

#
+ kx = F0 cos vt

F(t) = F0 cos vt.

Foundation or baseFoundation or base

(a)

x(t)

k c

Machine (m)

Resilient
member Resilient

member

(b)

x(t)
F(t) * F0 cos vtF(t) * F0 cos vt

Machine (m)

FIGURE 9.20 Machine and resilient member on rigid

foundation.
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The magnitude of the total transmitted force is given by

(9.93)

The transmissibility or transmission ratio of the isolator is defined as the ratio of the

magnitude of the force transmitted to that of the exciting force:

(9.94)

where is the frequency ratio. The variation of with the frequency ratio is

shown in Fig. 9.21. In order to achieve isolation, the force transmitted to the foundation

needs to be less than the excitation force. It can be seen, from Fig. 9.21, that the forcing

frequency has to be greater than times the natural frequency of the system in order to

achieve isolation of vibration.

22

r =
v

vn
Tfr =

v

vn

 =

L

1 + 12zr22

[1 - r2]2
+ 12zr22

M

1/2

 Tf =
FT

F0
= e

k2
+ v2c2

1k - mv2
2

2
+ v2c2

f

1/2

(Tf)

 =
F01k2

+ v2c2
2

1/2

[(k - mv2)2
+ v2c2]1/2

 FT = [(kx)2
+ (cx 

#
)2]1/2

= X4k2
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(FT)

0.0

1.0

0.5

2.0

1.5

2.5

0.5 2.0

r

1.0 1.5 2.5 3.0

T
ra

n
sm

is
si

b
il

it
y
 (
T
f)

z  0.00

z  0.25

z  0.50

Amplification
region

Isolation
region

T
f 

 1

T
f 

 1

*2

FIGURE 9.21 Variation of transmission

ratio with r.1Tf2
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For small values of damping ratio and for frequency ratio the force transmis-

sibility, given by Eq. (9.94), can be approximated as

(9.95)

Notes

1. The magnitude of the force transmitted to the foundation can be reduced by decreas-

ing the natural frequency of the system 

2. The force transmitted to the foundation can also be reduced by decreasing the damp-

ing ratio. However, since vibration isolation requires the machine should

pass through resonance during start-up and stopping. Hence, some damping is essen-

tial to avoid infinitely large amplitudes at resonance.

3. Although damping reduces the amplitude of the mass (X) for all frequencies, it

reduces the maximum force transmitted to the foundation only if 

Above that value, the addition of damping increases the force transmitted.

4. If the speed of the machine (forcing frequency) varies, we must compromise in choos-

ing the amount of damping to minimize the force transmitted. The amount of damping

should be sufficient to limit the amplitude X and the force transmitted while passing

through the resonance, but not so much to increase unnecessarily the force transmitted

at the operating speed.

Reduction of the Vibratory Motion of the Mass. In many applications, the isolation

is required to reduce the motion of the mass (machine) under the applied force. The

displacement amplitude of the mass m due to the force F(t), given by Eq. (9.90), can be

expressed as:

(9.96)

where is called, in the present context, the displacement transmissibility or amplitude

ratio and indicates the ratio of the amplitude of the mass, X, to the static deflection under the

constant force The variation of the displacement transmissibility with the fre-

quency ratio r for several values of the damping ratio is shown in Fig. 9.22. The following

observations can be made from Fig. 9.22:

1. The displacement transmissibility increases to a maximum value at (Eq. (3.33)):

(9.97)

Equation (9.97) shows that, for small values of damping ratio the displacement

transmissibility (or the amplitude of the mass) will be maximum at or v L vn.r L 1

z,

r = 21 - 2z2

z

F0, dst =
F0

k
.

X

dst

Td =
X

dst

=
kX

F0

=
1

2(1 - r2)2
+ (2zr)2

Ft

r 6 22.(Ft)

r 7 22,

(vn).

Tf =
Ft

F
L

1

r2
- 1

 or r2
L

1 + Tf

Tf

r 7 1,z
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FIGURE 9.22 Variation of displacement transmissibility 

with r.

(Td)

Spring Support for Exhaust Fan

An exhaust fan, rotating at 1000 rpm, is to be supported by four springs, each having a stiffness of K.

If only 10 percent of the unbalanced force of the fan is to be transmitted to the base, what should be

the value of K? Assume the mass of the exhaust fan to be 40 kg.

Solution: Since the transmissibility has to be 0.1, we have, from Eq. (9.94),

(E.1)0.1 = E

1 + a2z 

v

vn

b

2

e 1 - a
v

vn

b

2

f

2

+ a2z 

v

vn

b

2
U

1/2

Thus the value of is to be avoided in practice. In most cases, the excitation fre-

quency is fixed and hence we can avoid by altering the value of the natural

frequency which can be accomplished by changing the value of either or

both of m and k.

2. The amplitude of the mass, X, approaches zero as r increases to a large value. The rea-

son is that at large values of r, the applied force F(t) varies very rapidly and the inertia

of the mass prevents it from following the fluctuating force.

vn =
A

k

m

r L 1v

r L 1

E X A M P L E  9 . 4
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808 CHAPTER 9 VIBRATION CONTROL

where the forcing frequency is given by

(E.2)

and the natural frequency of the system by

(E.3)

By assuming the damping ratio to be we obtain from Eq. (E.1),

(E.4)

To avoid imaginary values, we need to consider the negative sign on the right-hand side of Eq. (E.4).

This leads to

or

*

Design of an Undamped Isolator

A 50-kg mass is subjected to the harmonic force Design an undamped iso-

lator so that the force transmitted to the base does not exceed 5% of the applied force. Also, find the

displacement amplitude of the mass of the system with isolation.

Solution: By setting the value of force transmissibility as 0.05 and using Eq. (9.95) gives

(E.1)

Using the definition of r, along with the values of and Eq. (E.1) yields

or

(E.2)k =
v2m

r2
=

(1202)(50)

21
= 34.2857 * 103 N/m

r2
=
v2

vn
2
=
v2m

k

v = 120 rad/s,m = 50 kg

r2
L

1 + Tf

Tf
=

1 + 0.05

0.05
= 21

z = 0,

F(t) = 1000 cos 120t N.

K = 9969.6365 N/m

331.1561

2K
= 3.3166

0.1 =
;1

e 1 - a
104.72 * 3.1623

2K
b

2

f

z = 0,

vn = a
k

m
b

1/2

= a
4K

40
b

1/2

=
2K

3.1623

v =
1000 * 2p

60
= 104.72 rad/s

E X A M P L E  9 . 5
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9.10 VIBRATION ISOLATION 809

The displacement amplitude of the mass of the system with isolation can be found from Eq. (9.96),

with 

(E.3)

*

Design Chart for Isolation:

The force transmitted to the base or ground by a source of vibration (vibrating mass) is given

by Eq. (9.94) and is shown in Fig. 9.21 as a graph between and As

noted earlier, vibration isolation reduction of the force transmitted to the ground can be

achieved for In the region low values of damping are desired for more

effective isolation. For large values of r and low values of the term becomes very

small and can be neglected in Eq. (9.94) for simplicity. Thus Eq. (9.94) can be approximated

as shown in Eq. (9.95) for and small.

By defining the natural frequency of vibration of the undamped system as

(9.98)

and the exciting frequency as

(9.99)

where is the static deflection of the spring and N is the frequency in cycles per minute

or revolutions per minute (rpm) of rotating machines such as electric motors and turbines,

Eqs. (9.95) to (9.99) can be combined to obtain

(9.100)

where is used to indicate the quality of the isolator and denotes the percent

reduction achieved in the transmitted force. Equation (9.100) can be rewritten as

(9.101)

Equation (9.101) can be used to generate a graph between log N and log as a series of

straight lines for different values of R, as shown in Fig. 9.23. This graph serves as a design

chart for selecting a suitable spring for the isolation.

dst

N =
30

pC
g

dst

 a
2 - R

1 - R
b = 29.9092 A

2 - R

dst11 - R2

R = 1 - Tf

r =
v

vn
=

2pN

60 A
dst

g
= A

2 - R

1 - R

dst

v =
2pN

60

v

vn = A
k

m
= A

g

dst

zr 7 22

(2 zr)2z,
r 7 12,r 7 12.

r = v/vn.Tf = FT/F0

X =
F0

k
 

1

(r2
- 1)

=
1000

34.2857 * 103
 

1

(21 - 1)
= 1.4583 * 10-3 m

z = 0:
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810 CHAPTER 9 VIBRATION CONTROL

Isolator for Stereo Turntable

A stereo turntable, of mass 1 kg, generates an excitation force at a frequency of 3 Hz. If it is sup-

ported on a base through a rubber mount, determine the stiffness of the rubber mount to reduce the

vibration transmitted to the base by 80 percent.

Solution: Using and Eq. (9.105) gives

or

dst = 0.1657 m

180 = 29.9092 

A
2 - 0.80

dst 
11 - 0.802

R = 0.80,N = 3 * 60 = 180 cpm

E X A M P L E  9 . 6
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FIGURE 9.23 Isolation efficiency.
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9.10 VIBRATION ISOLATION 811

The static deflection of the rubber mount can be expressed, in terms of its stiffness (k), as

which gives the stiffness of the rubber mount as

*

Isolation of systems with rotating unbalance:

A common source of forced harmonic force is imbalance in rotating machines such as tur-

bines, centrifugal pumps, and turbogenerators. Imbalance in a rotating machine implies that

the axis of rotation does not coincide with the center of mass of the whole system. Even a

very small eccentricity can cause a large unbalanced force in high-speed machines such as

turbines. A typical rotating system with an unbalance is shown in Fig. 9.24. Here the total

mass of the system is assumed to be M and the unbalanced mass is considered as a point

mass m located at the center of mass of the system (which has an eccentricity of e from the

center of rotation) as shown in Fig. 9.24. If the unbalanced mass rotates at an angular

velocity and the system is constrained to move in the vertical direction, the equation of

motion of the system is given by

(9.102)Mx
$

+ cx
#
+ kx = F0 sin vt K mev2 sin vt

v

0.1657 =

119.812

k
 or k = 59.2179 N/m

dst =

mg

k

c

x(t)

(M  m)

G
m

e

O

v

k

2

k

2

FIGURE 9.24 A system with rotating unbalance.
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812 CHAPTER 9 VIBRATION CONTROL

6The available clearance space that permits the system to undergo the induced deflection freely during vibration

is called the rattle space or clearance. If the rattle space is too small to accommodate the deflection of the system,

the system will undergo impacts (as it hits the surrounding or nearby surface or object) in each cycle of vibration.

Using the force transmissibility of the system can be found from Eq. (9.88).

However, the presence of in results in the following equation for the force trans-

missibility due to rotating unbalance:

or

(9.103)
Ft

mevn
2
= r2

b
1 + (2zr)2

(1 - r2)2
+ (2zr)2 r

1
2

Tf =
Ft

F0
 =

Ft

mev2
=

Ft

mer2vn
2

(Tf)
F0v2

F0 = mev2,

E X A M P L E  9 . 7
Centrifugal Pump with Rotating Unbalance Rattle Space

A centrifugal pump, with a mass of 50 kg and rotational speed of 3000 rpm, is mounted in the mid-

dle of a simply supported beam of length 100 cm, width 20 cm, and thickness 0.5 cm. The damping

ratio of the system (beam) can be assumed as The impeller (rotating part) of the pump has

a mass of 5 kg with an eccentricity of 1 mm. If the maximum deflection of the beam is is constrained

to be less than the available rattle space6 of 3 mm. Determine whether the support system of the pump

is adequate.

Solution: The bending stiffness or spring constant of the simply supported beam is given by

where the moment of inertia of the beam cross section can be computed as

Using the spring constant of the beam can be found as

Using the density of steel as the mass of the beam can be determined as

mb = 7.85(100)(20)(0.5) = 7850 gram = 7.85 kg

(mb)7.85 gram/cm3,

k =

48(207 * 109)(20.8333 * 10-10)

(1.03)
= 206,999.6688 N/m

E = 207 * 109 Pa,

I =
1

12
 wt3

=

(20)(0.053)

12
= 0.208333 cm4

= 20.8333 * 10-10 m4

k =
48EI

l3

z = 0.05.
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9.10 VIBRATION ISOLATION 813

The total mass of the system (M) is equal to the mass of the pump plus the effective mass of the beam

at its center (equal to see Problem 2.86):

The natural frequency of the system is given by

The impeller (rotor) speed of 3000 rpm gives Thus the fre-

quency ratio (r) becomes

The amplitude of the forcing function is

Using the steady-state amplitude of the pump can be found from Eq. (9.96), using 

for as

The static deflection of the beam under the weight of the pump can be determined as

Thus the total deflection of the system is

This deflection is less than the rattle space of 3 mm. As such the support system of the pump is ade-

quate. In case the value of exceeds the rattle space, we need to redesign (modify) the support

system. This can be achieved by changing the spring constant (dimensions) of the beam and/or by

introducing a damper.

*

dtotal

dtotal = X + dpump = 9.662 * 10-5
+ 236.9569 * 10-5

= 246.6231 * 10-5 m = 2.4662 mm

dpump =

Wpump

k
=

(50)(9.81)

206999.6688
= 236.9569 * 10-5 m

 =
493.4825

206999.6688
 

1

24.6629
= 9.6662 * 10-5 m

 X =
mev2

k
 

1

2(1 - r2)2
+ (2zr)2

=
493.4825

206999.6688
 

1

2(1 - 25.6577)2
+ 52(0.05)(5.0653)62

F0,
mev2z = 0.05,

mev2
= 5(10-3)(314.162) = 493.4825 N

r =
v

vn
=

314.16

62.0215
= 5.0653;  r2

= 25.6577

v = 2p(3000)/60 = 314.16 rad/s.

vn = A
k

M
= A

206999.6688

53.8128
= 62.0215 rad/s

M = mpump +
17

35
 mb = 50 +

17

35
 (7.85) = 53.8128 kg

17

35
 mb;
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814 CHAPTER 9 VIBRATION CONTROL

9.10.2
Vibration
Isolation System
with Base
Motion

In some applications, the base of the system is subjected to a vibratory motion. For example,

the base or foundation of a machine such as a turbine in a power plant may be subjected to

ground motion during an earthquake. In the absence of a suitably designed isolation system,

the motion of the base transmitted to the mass (turbine) might cause damage and power

failure. Similarly, a delicate instrument (mass) may have to be protected from a force or

shock when the package containing the instrument is dropped from a height accidentally.

Also, if the instrument is to be transported, the vehicle carrying it may experience vibration

as it travels on a rough road with potholes. In this case, also, proper isolation is to be used

to protect the instrument against excessive displacement or force transmitted from the base

motion.

For a single-degree-of-freedom system with base excitation, shown in Fig. 9.19(b), the

analysis was presented in Section 3.6. When the base of the system is subjected to a har-

monic motion, the equation of motion is given by Eq. (3.75):

(9.104)

where denotes the displacement of the mass relative to the base. If the base

motion is harmonic, then the motion of the mass will also be harmonic. Hence the dis-

placement transmissibility, is given by Eq. (3.68):

(9.105)

where X and Y denote the displacement amplitudes of the mass and the base, respectively,

and the right-hand-side expression can be identified to be the same as that in Eq. (9.94).

Note that Eq. (9.105) is also equal to the ratio of the maximum steady-state accelerations

of the mass and the base. The variation of the displacement transmissibility with the fre-

quency ratio (r) for different values of the damping ratio is shown in Fig. 9.25. The fol-

lowing observations can be made from Fig. 9.25:

1. For an undamped system, the displacement transmissibility approaches infinity at reso-

nance Thus the undamped isolator (stiffness) is to be designed to ensure that

the natural frequency of the system is away from the excitation frequency 

2. For a damped system, the displacement transmissibility (and hence the displacement

amplitude) attains a maximum for frequency ratios close to 1. The maximum dis-

placement amplitude of the mass can be larger than the amplitude of base motion

that is, the base motion can get amplified by a large factor.

3. The displacement transmissibility is close to 1 for small values of the frequency ratio

(r) and is exactly equal to 1 at 

4. The displacement amplitude is larger than 1 for and smaller than 1 for

Note that a smaller damping ratio corresponds to a larger for and

a smaller for Thus, if the damping of the system cannot be altered, the

natural frequency of the system (stiffness) can be changed to achieve a value of

r 7 22.

r 7 22.Td

r 6 22Tdr 7 22.

r 6 22

r = 22.

(v).(vn)

(r = 1).

(z)

Td =
X

Y
= b

1 + (2zr)2

(1 - r2)2
+ (2zr)2

r

1/2

Td =
X

Y
,

z = x - y

mz
$
+ cz

#
+ kz = -my

$

y(t) = Y sin vt,
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9.10 VIBRATION ISOLATION 815

If denotes the magnitude of the force transmitted to the mass by the spring and the

damper, the force transmissibility of the system is given by Eq. (3.74):

(9.106)

where kY is used to make the force transmissibility dimensionless. Note that once the

displacement transmissibility, or the displacement amplitude of the mass (X) is com-

puted using Eq. (9.105), the force transmitted to the mass, can be determined using

the relation

(9.107)

The variation of the force transmissibility with the frequency ratio (r) for different values

of the damping ratio is shown in Fig. 9.26. The following observations can be made

from Fig. 9.26:

1. The force transmissibility will be 2 at the frequency ratio for all values of

the damping ratio 

2. For a lower damping ratio corresponds to a lower value of force transmissibility.

3. For for any specific value of the damping ratio, the force transmissibility

increases with r. This behavior is opposite to that of displacement transmissibility.

4. The force transmissibility is close to zero at small values of the frequency ratio r and

attains a maximum at values of r close to 1.

r 7 22,

r 7 22,

(z).

r = 22(Tf)

(z)

Ft

kY
= r2

 

X

Y
  or  Ft = kr2X

Ft,
Td,

Tf =
Ft

kY
= r2

b
1 + (2zr)2

(1 - r2)2
+ (2zr)2

r

1
2

(Tf)
Ft

0
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FIGURE 9.25 Variation of with r (for base motion).Td
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Isolation from Vibrating Base

A vibrating system is to be isolated from its vibrating base. Find the required damping ratio that must

be achieved by the isolator to limit the displacement transmissibility to Assume the system

to have a single degree of freedom.

Solution: By setting Eq. (9.105) gives

or

*

z =
1

24Td
2
- 1

=
1

2215
= 0.1291

Td =
41 + 12z22

2z

v = vn,

Td = 4.

E X A M P L E  9 . 9
Design of Isolation for a Precision Machine with Base Motion

A precision machine used for the manufacture of integrated circuits, having a mass of 50 kg, is

placed on a work bench (as base). The ground vibration transmitted by a nearby internal combustion

engine causes the base (all four corners of the bench) to vibrate at a frequency of 1800 rpm. Helical

E X A M P L E  9 . 8

M09_RAO08193_5_SE_C09.qxd  8/22/10  1:01 PM  Page 816



9.10 VIBRATION ISOLATION 817

springs, with a damping ratio of and a relationship of bilinear load (P) to deflection (x)

given by

(E.1)

(P in newtons and x in meters) are available for use as isolators at the four corners of the base. If no

more than 10% of the vibration of the base is to be transmitted to the precision machine, determine a

method of achieving the isolation.

Solution: Since the displacement transmissibility is required to be 0.1, Eq. (9.105), for 

gives

(E.2)

The simplification of Eq. (E.2) yields a quadratic equation in as

(E.3)

The solution of Eq. (E.3) gives

which gives the positive value of r as Using the excitation frequency of

and the frequency ratio of the required natural frequency of the system can be deter-

mined as

(E.4)

Equation (E.4) gives 

We assume that that one helical spring is installed at each corner of the base (under the four

corners of the work bench). Because the expected deflection of the springs is unknown, the correct

stiffness of the springs (out of the two possible values) is unknown. Hence we use the relation (see

Eq. (2.28)):

(E.5)vn =
A

g

dst

 or 56.7776 =
A

9.81

dst

vn = 56.7776 rad/s.

r = 3.3199 =
v

vn

=
188.496

vn

r = 3.3199,

v =

2p(1800)

60
= 188.496 rad/s

3.3199.

r2
= 11.0218, -8.9822

r4
- 2.0396r2

- 99 = 0

r
2

Td =
X

Y
= 0.1 =

B
1 + {2(0.01)r}2

(1 - r2)2
+ {2(0.01)r}2

z = 0.01,

P = b
50,000x;   0 x 8 * 10-3

105x - 4 * 105;   8 * 10-3 x 13 * 10-3

z = 0.01
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818 CHAPTER 9 VIBRATION CONTROL

to find the static deflection of the system as

Since all the four springs experience the static load acting on each spring can be found from Eq.

(E.1) as

The total load on the four springs is Because the weight of the machine is

in order to achieve the total load of 608.62 N, we need to add a weight

of to the system. This weight, in the form of a rectangular steel plate,

is to be attached at the bottom of the machine, so that the total vibrating mass becomes 62.0408 kg

(with a weight of 608.62 N).

*

609.62 - 490.50 = 118.12 N

50 g = 50(9.81) = 490.5 N,

4 * 152.155 = 608.62 N.

P = 50000(3.0431 * 10-3) = 152.155 N

dst,

dst =
9.81

56.77762
= 3.0431 * 10-3 m

(dst)

E X A M P L E  9 . 1 0
Isolation System for a System with Base Motion

A printed circuit board (PCB) made of fiber-reinforced plastic composite material is used for the

computer control of an automobile engine. It is attached to the chassis of the computer, which is

fixed to the frame of the automobile as shown in Fig. 9.27(a). The frame of the automobile and the

chassis of the computer are subject to vibration at the engine speed of 3000 rpm. If it is required to

achieve a displacement transmissibility of no more than 10% at the PCB, design a suitable isolation

system between the chassis of the computer and the frame of the automobile. Assume that the chas-

sis of the computer is rigid with a mass of 0.25 kg.

Data of PCB: Length (l): 25 cm, width (w): 20 cm, thickness (t): 0.3 cm, mass per unit surface

area: Young s modulus (E): damping ratio: 0.01.

Solution: The PCB is assumed to be fixed to the chassis of the computer as a cantilever beam. Its

mass is given by The equivalent mass at the free end of the

cantilever is is (see Example 2.9):

Using the moment of inertia of the cross section of the PCB

the stiffness of the PCB as a cantilever beam can be computed as

kb =
3EI

l3
=

3(15 * 109)(45 * 10-8)

(0.25)3
= 1.296 * 106 N/m

I =
1

12
 wt3

=
1

12
 (0.20)(0.003)3

= 45 * 10-8 m4

mb =
33

140
 mPCB =

33

140
 (2.5) = 0.5893 kg

mb

25 * 20 * 0.005 = 2.5 kg.(mPCB)

15 * 109 N/m2,0.005 kg/cm2,
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9.10 VIBRATION ISOLATION 819

The natural frequency of the PCB is given by

The frequency of vibration of the base (chassis of the computer) is

v =

2p(3000)

60
= 312.66 rad/s

vn =
A

kb

mb

=
A

1.296 * 106

0.5893
= 1482.99 rad/s

PCB

(a)

(b)

(c)

Frame

Chassis of
computer

t

l

PCB

Frame

Chassis of
computer

t

l

c k

Frame

c

m

k

FIGURE 9.27
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820 CHAPTER 9 VIBRATION CONTROL

The frequency ratio is given by

Using the damping ratio the displacement transmissibility can be determined from

Eq. (9.105):

(E.1)

This value of exceeds the maximum permissible value of 10%. Hence we design an

isolator (with stiffness k and damping constant c) between the chassis of the computer and the frame

of the automobile as shown in Fig. 9.27(b). If we model the PCB with stiffness and mass as

before, the addition of the isolator makes the problem a two-degree-of-freedom system. For simplicity,

we model the cantilever beam (PCB) as a rigid mass with no elasticity. This leads to the single-degree-of-

freedom system shown in Fig. 9.27(c), where the equivalent mass m is given by

Assuming a damping ratio of 0.01, for the required displacement transmissibility of 10%, the fre-

quency ratio r can be determined from the relation

(E.2)

By squaring both sides of Eq. (E.2) and rearranging the terms, we obtain

(E.3)

The positive root of Eq. (E.3) is or The stiffness of the isolator is given by

The damping constant of the isolator can be computed as

*

c = 2z2mk = 2(0.01)2(2.75)(24390.7309) = 5.1797 N-s/m

k =
mv2

r2
=

(2.75)(312.662)

11.0218
= 24,390.7309 N/m

r = 3.3199.r
2
= 11.0218

r4
- 2.0396r2

- 99 = 0

Td = 0.1 = b

1 + [2(0.01)r]2

(1 - r2)2
+ [2(0.01)r]2

r

1
2

m = mPCB + mchassis = 2.5 + 0.25 = 2.75 kg

mbkb

Td = 104.65%

 = 1.0465

 = b

1 + [2(0.01)(0.2108)]2

(1 - 0.21082)2
+ [2(0.01)(0.2108)]2

r

 Td =
X

Y
= b

1 + (2zr)2

(1 - r2)2
+ (2zr)2

r

1
2

z = 0.01,

r =
v

vn
=

312.66

1482.99
= 0.2108
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9.10 VIBRATION ISOLATION 821

9.10.3
Vibration
Isolation System
with Flexible
Foundation

In many practical situations, the structure or foundation to which the isolator is connected

moves when the machine mounted on the isolator operates. For example, in the case of a

turbine supported on the hull of a ship or an aircraft engine mounted on the wing of an air-

plane, the area surrounding the point of support also moves with the isolator. In such cases,

the system can be represented as having two degrees of freedom. In Fig. 9.28, and 

denote the masses of the machine and the supporting structure that moves with the isolator,

respectively. The isolator is represented by a spring k, and the damping is disregarded for

the sake of simplicity. The equations of motion of the masses and are

(9.108)

By assuming a harmonic solution of the form

Eqs. (9.108) give

(9.109)

The natural frequencies of the system are given by the roots of the equation

(9.110)

The roots of Eq. (9.110) are given by

(9.111)v1
2
= 0,  v2

2
=

1m1 + m22k

m1m2

3

1k - m1v
2
2 -k

-k 1k - m2v
2
2

3 = 0

X11k - m1v
2
2 - X2k = F0

-X1k + X21k - m2v
2
2 = 0

f

xj = Xj cos vt,  j = 1, 2

 m2x
$

2 + k1x2 - x12 = 0

 m1x
$

1 + k1x1 - x22 = F0  cos vt

m2m1

m2m1

Isolator
(k)

F(t) * F0 cos vt

Machine (m1)
x1(t)

x2(t)

Supporting structure (m2)

FIGURE 9.28 Machine with isolator

on a flexible foundation.
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822 CHAPTER 9 VIBRATION CONTROL

Figure 9.29 shows a more realistic situation in which the base of the isolator, instead of

being completely rigid or completely flexible, is partially flexible [9.34]. We can define the

mechanical impedance of the base structure, as the force at frequency required to

produce a unit displacement of the base (as in Section 3.5):

Z1v2 =
Applied force of frequency v

Displacement

vZ(v),

9.10.4
Vibration
Isolation System
with Partially
Flexible
Foundation

The value corresponds to rigid-body motion, since the system is unconstrained. In

the steady state, the amplitudes of and are governed by Eq. (9.109), whose solution

yields

(9.112)

The force transmitted to the supporting structure is given by the amplitude of 

(9.113)

The transmissibility of the isolator is given by

(9.114)

where is the natural frequency of the system given by Eq. (9.111). Equation (9.114)

shows, as in the case of an isolator on a rigid base, that the force transmitted to the founda-

tion becomes less as the natural frequency of the system is reduced.v2

v2

 =
m2

1m1 + m22
 +

1

1 -
v

2

v
2
2

*

 =
1

a
m1 + m2

m2
-

m1v
2

k
b

 =
-  m2kv2

[(k - m1v
2) (k - m2v

2) - k2]

 Tf =
Ft

F0

(Tf)

Ft = -
 
m2v

2X2 =
-  m2kv2F0

[(k - m1v
2) (k - m2v

2) - k2]

m2x
$

2:(Ft)

 X2 =
kF0

[(k - m1v
2) (k - m2v

2) - k2]

 X1 =

1k - m2v
2
2F0

[(k - m1v
2) (k - m2v

2) - k2]

m2m1

v1 = 0
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Isolator
(k)

F(t) * F0 cos vt
Machine (m1)

x1(t)

x2(t)Supporting
structure (m2)

Partially flexible
with mechanical
impedance Z(v)

FIGURE 9.29 Machine with isolator on a

partially flexible foundation.

7If the base is completely flexible with an unconstrained mass of and Eqs. (9.115) to

(9.117) lead to Eq. (9.109).

m2, Z(v) = -v
2m2,

The equations of motion are given by7

(9.115)

(9.116)

By substituting the harmonic solution

(9.117)

into Eqs. (9.115) and (9.116), and can be obtained as in the previous case:

(9.118)

The amplitude of the force transmitted is given by

(9.119)Ft = X2Z(v) =

kZ1v2F0

[Z(v) (k - m1v
2) - km1v

2]

 X2 =
kF0

[Z(v)(k - m1v
2) - km1v

2]

 X1 =

[k + Z(v)]X2

k
=

[k + Z(v)]F0

[Z(v) (k - m1v
2) - km1v

2]

X2X1

xj1t2 = Xj cos vt,  j = 1, 2

 k1x2 - x12 = -x2Z1v2

 m1x
$

1 + k1x1 - x22 = F0 cos vt
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9.10.5

Shock Isolation

As stated earlier, a shock load involves the application of a force for a short duration, usu-

ally for a period of less than one natural time period of the system. The forces involved in

forge hammers, punch presses, blasts, and explosions are examples of shock loads. Shock

isolation can be defined as a procedure by which the undesirable effects of shock are

reduced. We noted that vibration isolation under a harmonic disturbance (input) occurs

for the frequency ratio with a smaller value of the damping ratio leading to

better isolation. On the other hand, shock isolation must occur over a wide range of fre-

quencies, usually with large values of Thus a good vibration isolation design proves to

be a poor shock isolation design and vice versa. In spite of the differences, the basic prin-

ciples involved in shock isolation are similar to those of vibration isolation; however, the

equations are different due to the transient nature of the shock.

A short-duration shock load F(t), applied over a time period T, can be treated as an

impulse 

(9.121)

Since this impulse acts on the mass m, the principle of impulse-momentum can be applied

to find the velocity imparted to the mass (v) as

(9.122)

This indicates that the application of a short-duration shock load can be considered as

equivalent to giving an initial velocity to the system. Thus the response of the system under

the shock load can be determined as the free-vibration solution with a specified initial

velocity. By assuming the initial conditions as and the

free-vibration solution of a viscously damped single-degree-of-freedom system (displace-

ment of the mass m) can be found from Eq. (2.72) as

(9.123)x1t2 =
ve- 

zvnt

vd
 sin vdt

x 
#
(0) = x 

#

0 = v,x(0) = x0 = 0

v =
F

m

F =

3

 T

0 

 F1t2 dt

F:

z.

(z)r 7 12,

and the transmissibility of the isolator by

(9.120)

In practice, the mechanical impedance depends on the nature of the base structure. It

can be found experimentally by measuring the displacement produced by a vibrator that

applies a harmonic force on the base structure. In some cases for example, if an isolator

is resting on a concrete raft on soil the mechanical impedance at any frequency can be

found in terms of the spring-mass-dashpot model of the soil.

v

Z(v)

Tf =
Ft

F0
=

kZ(v)

[Z(v) (k - m1v
2) - km1v

2]
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E X A M P L E  9 . 1 1

Isolation Under Shock

An electronic instrument of mass 20 kg is subject to a shock in the form of a step velocity of

2 m/s. If the maximum allowable values of deflection (due to clearance limit) and acceleration

are specified as 20 mm and 25 g, respectively, determine the spring constant of an undamped

shock isolator.

Solution: The electronic instrument supported on the spring can be considered as an undamped

system subject to base motion (in the form of step velocity). The mass vibrates at the natural

frequency of the system with the magnitudes of velocity and acceleration given by

(E.1)

(E.2)

where X is the amplitude of displacement of the mass. Since the maximum value of (step) velocity is

specified as 2 m/s and the maximum allowable value of X is given to be 0.02 m, Eq. (E.1) yields

(E.3)X =
x 
#

max

vn

6 0.02 or vn 7
x 
#

max

X
=

2

0.02
= 100 rad/s

 x
$

max = -X vn
2

 x 
#

max = X vn

where is the frequency of damped vibrations. The force transmitted to

the foundation, due to the spring and the damper is given by

(9.124)

Using Eq. (9.123), can be expressed as

(9.125)

where

(9.126)

Equations (9.125) and (9.126) can be used to find the maximum value of the force trans-

mitted to the foundation.

For longer-duration shock loads, the maximum transmitted force can occur while the

shock is being applied. In such cases, the shock spectrum, discussed in Section 4.6, can be

used to find the maximum force transmitted to the foundation.

The following examples illustrate different approaches that can be used for the design

of shock isolators.

f = tan-1 a
cvd

k - czvn

b

Ft1t2 =
v

vd

 41k - czvn2
2
+ 1cvd2

2 e- 
zvnt sin1vd t + f2

Ft(t)

Ft1t2 = kx1t2 + cx 
#
1t2

Ft(t),

vd = 11 - z2 vn
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E X A M P L E  9 . 1 2
Isolation Under Step Load

A sensitive electronic instrument of mass 100 kg is supported on springs and packaged for ship-

ment. During shipping, the package is dropped from a height that effectively applied a shock load

of intensity to the instrument, as shown in Fig. 9.30(a). Determine the stiffness of the springs

used in the package if the maximum deflection of the instrument is required to be less than

2 mm. The response spectrum of the shock load is shown in Fig. 9.30(b) with and

Solution: The response spectrum, indicating the maximum response of an undamped single-degree-

of-freedom system subject to the given shock, is given by

(E.1)

where is the natural frequency of the system:

(E.2)

and k is the stiffness of the springs used in the package. Using the known

data, Eq. (E.1) can be expressed as

(E.3)

By using the equality sign, Eq. (E.3) can be rearranged as

(E.4)
100

2k
 4211 - cos 0.022k2 - 2 * 10-6k + 1 = 0

xmaxk

1000
= 1 +

1

0.1 2k  10.12
 42 11 - cos 2(0.11k2 10.12)

2

1000
  a

k

1000
b

F0 = 1000 N, t0 = 0.1 s,

vn = A
k

m
= A

k

100
= 0.12k

vn

xmaxk

F0

= 1 +
1

vnt0
22 11 - cos 2vnt02

t0 = 0.1 s.

F0 = 1000 N

F0

Similarly, using the maximum specified value of as 25 g, Eq. (E.2) gives

(E.4)

Equations (E.3) and (E.4) give By selecting the value of in

the middle of the permissible range as 105.3681 rad/s, the stiffness of the spring (isolator) can be

found as

(E.5)

*

k = mvn
2
= 20 1105.368122

= 2.2205 * 105 N/m

vn100 rad/s vn 110.7362 rad/s.

Xvn
2 25 19.812 = 245.25 m/s2  or  vn A

x
$

max

X
= A

245.25

0.02
= 110.7362 rad/s

x
$

max
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F(t)

t

t0O

k

m

F(t)

F0

(a)

(b)

1.0
0

1.5

2.0

2.01.0 3.0 4.0

vnt0

2p

x
m

a
x
k

F
0

vnt0

1
1 + *2 (1 * cos vnt0)

FIGURE 9.30 Shock load on electronic instrument.

The root of Eq. (E.4) gives the desired stiffness value as The following

MATLAB program can be used to find the root of Eq. (E.4):

>> x=1000:1:10000000;

>> f='(100/sqrt(x))*sqrt(2*(1 cos(0.02*sqrt(x)))) 0.000002*x+1';

>> root=fzero(f,100000)

root =

6.2615e+005

>>

*

k = 6.2615 * 10
5 N/m.

9.10.6

Active Vibration

Control

A vibration isolation system is called active if it uses external power to perform its func-

tion. It consists of a servomechanism with a sensor, signal processor, and an actuator, as

shown schematically in Fig. 9.31 [9.31 9.33]. This system maintains a constant distance

(l) between the vibrating mass and the reference plane. As the force F(t) applied to the

system (mass) varies, the distance l tends to vary. This change in l is sensed by the sensor

and a signal, proportional to the magnitude of the excitation (or response) of the vibrating
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828 CHAPTER 9 VIBRATION CONTROL

body, is produced. The signal processor produces a command signal to the actuator based

on the sensor signal it receives. The actuator develops a motion or force proportional to

the command signal. The actuator motion or force will control the base displacement such

that the distance l is maintained at the desired constant value.

Different types of sensors are available to create feedback signals based on the dis-

placement, velocity, acceleration, jerk, or force. The signal processor may consist of a

passive mechanism, such as a mechanical linkage, or an active electronic or fluidic net-

work that can perform functions such as addition, integration, differentiation, attenuation,

or amplification. The actuator may be a mechanical system such as a rack-and-pinion or

ball screw mechanism, a fluidic system, or piezoelectric and electromagnetic force gener-

ating system. Depending on the types of sensor, signal processor, and actuator used, an

active vibration control system can be called electromechanical, electrofluidic, electro-

magnetic, piezoelectric, or fluidic.

Analysis: Consider a single-degree-of-freedom system in which the mass m is subjected to

an applied force f(t) as shown in Fig. 9.31. If we use an active control system to control the

vibration of the mass m, the actuator will be designed to exert a control force so that

the equation of motion of the system becomes

(9.127)

Most commonly, the sensor (computer) measures the displacement x and the velocity of

the mass in real time (continuously). The computer computes the control force nec-

essary to control the motion and commands the actuator to exert the force on the

mass m.

Usually the computer is programmed to generate the control force proportional to the

displacement x(t) and the displacement derivative or velocity of the mass so that

(9.128)fc(t) = -gpx - gdx
#

x
#
(t)

fc(t)
fc(t)

x
#

mx
$

+ cx
#
+ kx = F(t) = f(t) + fc(t)

fc(t)

Passive
system

x(t) F(t)

m

k c

Control signal

Actuator

Active control
system

Motion
sensor

Control law
electronics
(computer)

Sensor signal

FIGURE 9.31 Active vibration isolation system.
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9.10 VIBRATION ISOLATION 829

where and are constants whose values are to be determined and programmed into the

computer by the designer. The constants and are known as control gains, with 

denoting the proportional gain and indicating the derivative or rate gain. The control

algorithm in this case is known as the proportional and derivative (PD) control. By substi-

tuting Eq. (9.128) into Eq. (9.127), we obtain

(9.129)

which shows that acts like additional (or artificial) damping and like additional (or

artificial) stiffness. Equation (9.129), known as the closed-loop equation, can be solved to

find the response characteristics of the system. For example, the new (effective) natural

frequency is given by

(9.130)

and the new (effective) damping ratio by

(9.131)

The new (effective) time constant of the system, for is given by

(9.132)

Thus the functioning of the active vibration control system can be described as follows:

Given the values of m, c, and k, compute the control gains and to achieve the desired

values of or In practice, the response of the system is continuously monitored, the

computations are done, and the actuator is made to apply the control force to the mass in

real time so that the response of the system lies within the stated limits. Note that the

gains and can be positive or negative depending on the measured and desired

responses.

gdgp

fc

t.vn, z,
gdgp

t =
2m

c + gd

z 1,

z =
c + gd

22m(k + gp)

vn = +

k + gp

m
*

1
2

gpgd

mx
$

+ (c + gd)x
#
+ (k + gp)x = f(t)

gd

gpgdgp

gdgp

E X A M P L E  9 . 1 3
Vibration Control of a Precision Electronic System

It is proposed to control the vibration of a precision electronic system supported on an elastic pad

(with no damping) by either a passive or an active method. The system has a mass of 15 kg and a nat-

ural frequency of 20 rad/s. It is estimated that the system requires a damping ratio of to

control the vibration. Assume that the available dashpots can provide damping constants only in the

range 0 c 400 N-s/m.

z = 0.85
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Solution: First, we investigate the use of an available dashpot to control the vibration (passive

control). From the known natural frequency of the system, we can find the stiffness of the elastic

pad as

(E.1)

The required damping ratio of the system gives the necessary damping constant (c) as

(E.2)

Since the available dashpots can provide damping constant values up to 400 N-s/m only, we cannot

achieve the desired control using passive damping.

Thus we consider an active control system to create the required amount of damping into the

system. Let the control force be of the form so that the damping ratio, alternate form of

Eq. (9.131), can be expressed (with ):

(E.3)

By adding the available dashpot, with a damping constant of 400 N-s/m, Eq. (E.3) can be rewritten as

or

This gives the value of the damping constant to be provided by the active control (also known as

derivative gain) as 

*

gd = 110 N-s/m.

gd = 110 N-s/m

400 + gd = 2mzvn = 2(15)(0.85)(20) = 510 N-s/m

2zvn =

c + gd

m

gp = 0

fc = -gdx
#
,

z =
c

22km
= 0.85 or c = 2z2km = 2(0.85)26000(15) = 510 N-s/m

vn = A
k

m
 or k = mvn

2
= 15(20)2

= 6000 N/m

E X A M P L E  9 . 1 4
Active Control of a System with Rotating Unbalance

A single-degree-of-freedom system consists of a damping 

and The mass is subjected to a rotating unbalanced force

given by The following observations can be made from the given data:

(i) The natural frequency of the system, is close to the fre-

quency of the disturbance, 

(ii) The damping ratio of the system is small with a value of

z =
c

22km
=

4000

22[6(106)(160)]
= 0.06667

v = 60p = 188.4955 rad/s.

vn = A
k

m
= B

6(106)

150
= 200 rad/s,

f(t) = 100 sin 60pt N.

stiffness (k) = 6 * 106 N/m.4000 N-s/m,

constant (c) =mass (m) = 150 kg,
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It is desired to change the natural frequency of the system to 100 rad/s and the damping ratio to 0.5.

Because the values of k and c of the system cannot be altered, it is proposed to use an active control

system. Determine the control gains required to achieve the desired values of and Also find the

magnitude of the response and the actuator force of the system in the steady state.

Solution: When an active control system is used with control gains and the natural frequency

of the system can be expressed as

or

This implies that the stiffness of the system is to be reduced to The new damping

ratio of the system is given by

or

This implies that the damping of the system is to be increased to 15000 N-s/m.

The equation of motion of the actively controlled system can be written as

(E.1)

which, in this case, takes the form

(E.2)

From Eq. (E.1), the general transfer function of the system can be expressed as (see Section 3.12)

(E.3)

The magnitude of the steady-state response of the system corresponding to Eq. (E.3) is given by (see

Section 3.13)

(E.4)X =

f0

C(k - mv2)2
+ (cv)2

D

 
1
2

X(s)

F(s)
=

1

ms2
+ cs + k

150x
$
+ 15000x

#
+ 1.5(106)x = f(t) = 100 sin 60pt

mx
$
+ cx

#
+ kx = f(t) = f0 sin vt

gd = 15000 - 4000 = 11000 N-s/m

z = 0.5 =

c + gd

22km
=

4000 + gd

22[1.5(106)](150)

1.5 * 106 N/m.

gp = 150(104) - 6(106) = -4.5(106) N/m

vn = 100 = B
6(106) + gp

150

gd,gp

z.vn
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In the present case, and 

Thus Eq. (E.4) gives

The actuator (control) force, at steady state can be obtained from the relation

(E.5)

as

*

9.11 Vibration Absorbers

The vibration absorber, also called dynamic vibration absorber, is a mechanical device

used to reduce or eliminate unwanted vibration. It consists of another mass and stiffness

attached to the main (or original) mass that needs to be protected from vibration. Thus

the main mass and the attached absorber mass constitute a two-degree-of-freedom system,

hence the vibration absorber will have two natural frequencies. The vibration absorber is

commonly used in machinery that operates at constant speed, because the vibration

absorber is tuned to one particular frequency and is effective only over a narrow band of

frequencies. Common applications of the vibration absorber include reciprocating tools,

such as sanders, saws, and compactors, and large reciprocating internal combustion

engines which run at constant speed (for minimum fuel consumption). In these systems,

the vibration absorber helps balance the reciprocating forces. Without a vibration

absorber, the unbalanced reciprocating forces might make the device impossible to

hold or control. Vibration absorbers are also used on high-voltage transmission lines. In

 = 156.1289 N

 = 254.5(106)62
+ 511000(188.4955)62 (31.5113(10-6))

 = 4.5(106) - 11000(188.4955)i (31.5113(10-6))

 Ft(iv) = 4.5(106) - 11000iv X(iv)

Ft(s)

F(s)
=

Ft(s)

X(s)
 
X(s)

F(s)
=

k + cs

ms2
+ cs + k

Ft,

 = 31.5113(10-6) N

 =
150

4.7602(106)

 X =
150

B51.5(106) - 150(188.4955)2
6

2
+ 515000(188.4955)62

R

1
2

188.4955 rad/s.

v =k = 1.5 * 106 N-s/m,c = 15000 N-s/m,m = 150 kg,f0 = 100 N,
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Transmission line

Vibration absorber

FIGURE 9.32

this case, the dynamic vibration absorbers, in the form of dumbbell-shaped devices

(Fig. 9.32), are hung from transmission lines to mitigate the fatigue effects of wind-

induced vibration.

A machine or system may experience excessive vibration if it is acted upon by a force

whose excitation frequency nearly coincides with a natural frequency of the machine or

system. In such cases, the vibration of the machine or system can be reduced by using a

vibration neutralizer or dynamic vibration absorber, which is simply another spring-mass

system. The dynamic vibration absorber is designed such that the natural frequencies of

the resulting system are away from the excitation frequency. We shall consider the analysis

of a dynamic vibration absorber by idealizing the machine as a single-degree-of-freedom

system.

9.11.1
Undamped
Dynamic
Vibration
Absorber

When we attach an auxiliary mass to a machine of mass through a spring of stiffness

the resulting two-degree-of-freedom system will look as shown in Fig. 9.33. The equa-

tions of motion of the masses and are

(9.133)

By assuming harmonic solution,

(9.134)

we can obtain the steady-state amplitudes of the masses and as

(9.135)

(9.136) X2 =
k2F0

1k1 + k2 - m1v
2
21k2 - m2v

2
2 - k2

2

 X1 =

1k2 - m2v
2
2F0

1k1 + k2 - m1v
2
21k2 - m2v

2
2 - k2

2

m2m1

xj1t2 = Xj sin vt,  j = 1, 2

 m2x
$

2 + k21x2 - x12 = 0

 m1x
$

1 + k1x1 + k21x1 - x22 = F0 sin vt

m2m1

k2,

m1m2
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We are primarily interested in reducing the amplitude of the machine In order to

make the amplitude of zero, the numerator of Eq. (9.135) should be set equal to zero.

This gives

(9.137)

If the machine, before the addition of the dynamic vibration absorber, operates near its

resonance, Thus if the absorber is designed such that

(9.138)

the amplitude of vibration of the machine, while operating at its original resonant frequency,

will be zero. By defining

as the natural frequency of the machine or main system, and

(9.139)v2 = a
k2

m2

b

1/2

dst =
F0

k1

,  v1 = a
k1

m1

b

1/2

v
2
=

k2

m2

=

k1

m1

v
2
M v1

2
= k1/m1.

v
2
=

k2

m2

m1

(X1).

Isolator
(k1/2)

Isolator
(k1/2)

k2

x1(t)

x2(t)

F0 sin vt

Machine (m1)

Rigid base

Dynamic vibration
absorber

FIGURE 9.33 Undamped dynamic vibration 

absorber.
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9.11 VIBRATION ABSORBERS 835

as the natural frequency of the absorber or auxiliary system, Eqs. (9.135) and (9.136) can

be rewritten as

(9.140)

(9.141)

Figure 9.34 shows the variation of the amplitude of vibration of the machine with

the machine speed The two peaks correspond to the two natural frequencies of the

composite system. As seen before, at At this frequency, Eq. (9.141) gives

(9.142)

This shows that the force exerted by the auxiliary spring is opposite to the impressed force

and neutralizes it, thus reducing to zero. The size of the dynamic vibra-

tion absorber can be found from Eqs. (9.142) and (9.138):

(9.143)

Thus the values of and depend on the allowable value of X2.m2k2

k2X2 = m2v
2X2 = -F0

X1(k2X2 = -F0)

X2 = -  

k1

k2

 dst = -  

F0

k2

v = v1.X1 = 0

(v/v1).

1X1/dst2

 
X2

dst

=
1

c1 +
k2

k1

- a
v

v1

b

2

d c1 - a
v

v2

b

2

d -
k2

k1

 
X1

dst
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1 - a
v
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b
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- a
v

v1

b

2
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FIGURE 9.34 Effect of undamped vibration absorber 

on the response of machine.
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836 CHAPTER 9 VIBRATION CONTROL

It can be seen from Fig. 9.34 that the dynamic vibration absorber, while eliminating

vibration at the known impressed frequency introduces two resonant frequencies 

and at which the amplitude of the machine is infinite. In practice, the operating fre-

quency must therefore be kept away from the frequencies and The values of

and can be found by equating the denominator of Eq. (9.134) to zero. Noting that

(9.144)

and setting the denominator of Eq. (9.140) to zero leads to

(9.145)

The two roots of this equation are given by

(9.146)

which can be seen to be functions of and 

Notes

1. It can be seen, from Eq. (9.146), that is less than and is greater than the

operating speed (which is equal to the natural frequency, ) of the machine. Thus

the machine must pass through during start-up and stopping. This results in

large amplitudes.

2. Since the dynamic absorber is tuned to one excitation frequency the steady-state

amplitude of the machine is zero only at that frequency. If the machine operates at other

frequencies or if the force acting on the machine has several frequencies, then the

amplitude of vibration of the machine may become large.

3. The variations of and as functions of the mass ratio are
shown in Fig. 9.35 for three different values of the frequency ratio It can be
seen that the difference between and increases with increasing values of
m2/m1.

Æ2Æ1

v2/v1.
m2/m1Æ2/v2Æ1/v2

1v2,

Æ1

v1

Æ2Æ1

1v2/v12.1m2/m12

a
Æ1

v2

b

2

a
Æ2

v2

b

2 u =

e c1 + a1 +
m2

m1

b a
v2

v1

b

2

d

< e c1 + a1 +
m2

m1

b a
v2

v1

b

2

d

2

- 4a
v2

v1

b

2

f

1/2

f

2a
v2

v1

b

2

a
v

v2

b

4

a
v2
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b

2

- a
v

v2

b

2
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m2
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v2
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b

2

d + 1 = 0

k2

k1

=
k2

m2

  
m2

m1
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=
m2
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 a
v2

v1

b

2

Æ2Æ1

Æ2.Æ1v
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FIGURE 9.35 Variations of and given by Eq. (9.146).Æ2Æ1

E X A M P L E  9 . 1 5
Vibration Absorber for Diesel Engine

A diesel engine, weighing 3000 N, is supported on a pedestal mount. It has been observed that the

engine induces vibration into the surrounding area through its pedestal mount at an operating speed

of 6000 rpm. Determine the parameters of the vibration absorber that will reduce the vibration when

mounted on the pedestal. The magnitude of the exciting force is 250 N, and the amplitude of motion

of the auxiliary mass is to be limited to 2 mm.

Solution: The frequency of vibration of the machine is

Since the motion of the pedestal is to be made equal to zero, the amplitude of motion of the auxiliary

mass should be equal and opposite to that of the exciting force. Thus from Eq. (9.143), we obtain

(E.1)F0 = m2v
2X2

f =
6000

60
= 100 Hz or v = 628.32 rad/s
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Motor Generator

Vibration

absorber

FIGURE 9.36 Motor-generator set.

Substitution of the given data yields

Therefore The spring stiffness can be determined from Eq. (9.138):

Therefore, 

*

k2 = 1628.3222
10.316652 = 125009 N/m.

v
2
=

k2

m2

k2m2 = 0.31665 kg.

250 = m2 1628.3222
10.0022

E X A M P L E  9 . 1 6

Absorber for Motor-Generator Set

A motor-generator set, shown in Fig. 9.36, is designed to operate in the speed range of 2000 to

4000 rpm. However, the set is found to vibrate violently at a speed of 3000 rpm due to a slight unbal-

ance in the rotor. It is proposed to attach a cantilever mounted lumped-mass absorber system to elim-

inate the problem. When a cantilever carrying a trial mass of 2 kg tuned to 3000 rpm is attached to

the set, the resulting natural frequencies of the system are found to be 2500 rpm and 3500 rpm.

Design the absorber to be attached (by specifying its mass and stiffness) so that the natural frequen-

cies of the total system fall outside the operating-speed range of the motor-generator set.

Solution: The natural frequencies of the motor-generator set and of the absorber are given by

(E.1)

The resonant frequencies and of the combined system are given by Eq. (9.146). Since the

absorber is tuned, (corresponding to 3000 rpm). Using the notation

m =
m2

m1

,  r1 =
Æ1

v2

,  and r2 =
Æ2

v2

v1 = v2 = 314.16 rad/s1m = 2 kg2

Æ2Æ1

v1 = A
k1

m1

,  v2 = A
k2

m2

v2v1
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9.11 VIBRATION ABSORBERS 839

Eq. (9.146) becomes

(E.2)

Since and are known to be 261.80 rad/s (or 2500 rpm) and 366.52 rad/s (or 3500 rpm),

respectively, we find that

Hence

or

(E.3)

Since Eq. (E.3) gives and The

specified lower limit of is 2000 rpm or 209.44 rad/s, and so

With this value of Eq. (E.3) gives and 

With these values, the second resonant frequency can be found from

which gives larger than the specified upper limit of 4000 rpm. The spring stiff-

ness of the absorber is given by

*

k2 = v2
2m2 = 1314.1622

110.32272 = 1.0188 * 106 N/m

Æ2 M 4499.4 rpm,

r2
2
= a1 +

m

2
b + Ca1 +

m

2
b

2

- 1 = 2.2497

m2 = m110.69422 = 10.3227 kg.m = m2/m1 = 0.6942r1,

r1 =
Æ1

v2

=
209.44

314.16
= 0.6667

Æ1

m1 = m2/0.1345 = 14.8699 kg.m = m2/m1 = 0.1345r1 = 0.8333,

m = a
r1

4
+ 1

r1
2

b - 2

r1
2
= a1 +

m

2
b - Ca1 +

m

2
b

2

- 1

 r2 =
Æ2

v2

=
366.52

314.16
= 1.1667

 r1 =
Æ1

v2

=
261.80

314.16
= 0.8333

Æ2Æ1

r1
2, r2

2
= a1 +

m

2
b < Ca1 +

m

2
b

2

- 1
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Machine (m1)

Isolator
(k1/2)

Isolator
(k1/2)

x1(t)

Rigid base

Dynamic vibration absorber

F0 sin vt

x2(t)

m2

k2 c2

FIGURE 9.37 Damped dynamic vibration absorber.

9.11.2
Damped
Dynamic
Vibration
Absorber

The dynamic vibration absorber described in the previous section removes the original res-

onance peak in the response curve of the machine but introduces two new peaks. Thus the

machine experiences large amplitudes as it passes through the first peak during start-up

and stopping. The amplitude of the machine can be reduced by adding a damped vibration

absorber, as shown in Fig. 9.37. The equations of motion of the two masses are given by

(9.147)

(9.148)

By assuming the solution to be

(9.149)

the steady-state solution of Eqs. (9.147) and (9.148) can be obtained:

(9.150)

(9.151)

By defining

 f = va/vn = Ratio of natural frequencies

 vn
2
= k1/m1 = Square of natural frequency of main mass

 va
2
= k2/m2 = Square of natural frequency of the absorber

 dst = F0/k1 = Static deflection of the system

 m = m2/m1 = Mass ratio = Absorber mass/main mass

 X2 =

X11k2 + ivc22

1k2 - m2v
2
+ ivc22

 X1 =

F01k2 - m2v
2
+ ic2v2

[1k1 - m1v
2
21k2 - m2v

2
2 - m2k2v

2] + ivc21k1 - m1v
2
- m2v

2
2

xj1t2 = Xje
ivt,  j = 1, 2

 m2x
$

2 + k21x2 - x12 + c21x
#

2 - x
#

12 = 0

 m1x
$

1 + k1x1 + k21x1 - x22 + c21x
#

1 - x
#

22 = F0  sin vt
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FIGURE 9.38 Effect of damped vibration absorber on the

response of the machine.

the magnitudes, and can be expressed as

(9.152)

and

(9.153)

Equation (9.152) shows that the amplitude of vibration of the main mass is a function of 

f, g, and The graph of

against the forced frequency ratio is shown in Fig. 9.38 for and 

for a few different values of 

If damping is zero then resonance occurs at the two undamped reso-

nant frequencies of the system, a result that is already indicated in Fig. 9.34. When the

damping becomes infinite the two masses and are virtually clamped

together, and the system behaves essentially as a single-degree-of-freedom system with a

mass of and stiffness of In this case also, resonance occurs

with at

g =
v

vn
=

1

21 + m
= 0.9759

X1: q

k1.(m1 + m2) = (21/20) m

m2m1(z = q),

(c2 = z = 0),
z.

m = 1/20f = 1g = v/vn

`
X1

dst
`

z.
m,

X2

dst

= c

12zg2
2
+ f4

12zg2
2
1g2

- 1 + mg2
2

2
+ 5mf2g2

- 1g2
- 121g2

- f2
26

2
d

1/2

X1

dst

= c

12zg2
2
+ 1g2

- f2
2

2

12zg2
2
1g2

- 1 + mg2
2

2
+ 5mf2g2

- 1g2
- 121g2

- f2
26

2
d

1/2

X2,X1

 z = c2/cc = Damping ratio

 cc = 2m2vn = Critical damping constant

 g = v/vn = Forced frequency ratio
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FIGURE 9.39 Tuned vibration absorber.

Thus the peak of is infinite for as well as for Somewhere in between

these limits, the peak of will be a minimum.

Optimally Tuned Vibration Absorber. It can be seen from Fig. 9.38 that all the curves

intersect at points A and B regardless of the value of damping. These points can be located

by substituting the extreme cases of and into Eq. (9.152) and equating the

two. This yields

(9.154)

The two roots of Eq. (9.154) indicate the values of the frequency ratio, and

corresponding to the points A and B. The ordinates of A and B can be found

by substituting the values of and respectively, into Eq. (9.146). It has been observed

[9.35] that the most efficient vibration absorber is one for which the ordinates of the points

A and B are equal. This condition requires that [9.35]

(9.155)

An absorber satisfying Eq. (9.155) can be correctly called the tuned vibration absorber.

Although Eq. (9.155) indicates how to tune an absorber, it does not indicate the optimal

value of the damping ratio and the corresponding value of The optimal value of 

can be found by making the response curve as flat as possible at peaks A and B. This

can be achieved by making the curve horizontal at either A or B, as shown in Fig. 9.39. For

this, first Eq. (9.155) is substituted into Eq. (9.152) to make the resulting equation applica-

ble to the case of optimum tuning. Then the modified Eq. (9.152) is differentiated with

X1/dst

zX1/dst.z

f =
1

1 + m

gB,gA

gB = vB/v,
gA = vA/v

g4 - 2g2 a
1 + f2 + mf2

2 + m
b +

2f2

2 + m
= 0

z = qz = 0

X1

c2 = q .c2 = 0X1
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respect to g to find the slope of the curve of By setting the slope equal to zero at

points A and B, we obtain

(9.156)

and

(9.157)

A convenient average value of given by Eqs. (9.156) and (9.157) is used in design so that

(9.158)

The corresponding optimal value of becomes

(9.159)

Notes
1. It can be seen from Eq. (9.153) that the amplitude of the absorber mass is always

much greater than that of the main mass Thus the design should be able to

accommodate the large amplitudes of the absorber mass.

2. Since the amplitudes of are expected to be large, the absorber spring needs to

be designed from a fatigue point of view.

3. Most vibration absorbers used in practical applications are undamped. If damping is

added, it defeats the purpose of the vibration absorber, which is to eliminate unwanted

vibration. In a damped vibration absorber, the amplitude of vibration of the main mass

will be nonzero. Damping is to be added only in situations in which the frequency

band in which the absorber is effective is too narrow for operation.

4. Additional work relating to the optimum design of vibration absorbers can be found in
references [9.36 9.39].

9.12 Examples Using MATLAB

(k2)m2

(X1).

(X2)

a
X1

dst

b

optimal

= a
X1

dst

b

max

=
A

1 +
2

m

a
X1

dst

b

zoptimal
2

=
3m

811 + m23

z2

z2
=

me 3 +
A

m

m + 2
f

811 + m23
 for point B

z2
=

me 3 -
A

m

m + 2
f

811 + m23
 for point A

X1/dst.

E X A M P L E  9 . 1 7
Plotting of Transmissibility

Using MATLAB, plot the variation of transmissibility of a single-degree-of-freedom system with the

frequency ratio, given by Eq. (9.94), corresponding to and 0.5.z = 0.0, 0.1, 0.2, 0.3, 0.4,
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0
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1
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zeta * 0.1

zeta * 0.2

zeta * 0.3

zeta * 0.4

zeta * 0.5

w/wn

T
r

Solution: The following MATLAB program plots the variation of transmissibility as a function of

the frequency ratio using Eq. (9.94):

%Exam 9 17

for j = 1 : 5

kesi = j * 0.1;

for i = 1 : 1001

w_wn(i) = 3 * (i  1)/1000;

T(i) = sqrt((1 + (2 * kesi * w_wn(i)) ^ 2)/((1  w_wn(i) ^ 2) 

^ 2 + b

2 * kesi * w_wn(i) ^2));

end;

plot(w_wn, T);

hold on;

end;

xlabel ('w/w_n');

ylabel('Tr');

gtext('zeta = 0.1');

gtext('zeta = 0.2');

gtext('zeta = 0.3');

gtext('zeta = 0.4');

gtext('zeta = 0.5');

title('Ex9.2');

grid on;

*
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E X A M P L E  9 . 1 8
Vibration Amplitudes of Masses of Vibration Absorber

Using MATLAB, plot the variations of vibration amplitudes of the main and auxiliary masses of a

vibration absorber, Eqs. (9.140) and (9.141), as functions of the frequency ratio.

Solution: Equations (9.140) and (9.141) are plotted for the following data: 

and 0.5, and 0.1.

f = 1;

%------    zeta = 0.1, mu=0.05 -------------------------------------b

-------

zeta = 0.1;

mu = 0.05;

g = 0.6 : 0.001 : 1.3;

tzg2 = (2.*zeta.*g).^2 ;%---   tzg2 = (2*zeta*g)^2

g2_f2_2 = (g.^2-f.^2).^2 ;% g2_f2_2 = (g^2-f^2)^2

g2_1mug2_2 = (g.^2-1+mu.*g.^2).^2;

muf2g2 = mu.*f.^2*g.^2 ;

g2_1 = g.^2-1 ;

g2_f2 = g.^2-f.^2 ;

x1r =sqrt((tzg2+g2_f2_2)./(tzg2.*g2_1mug2_2+(muf2g2-g2_1.*g2_f2).^2));

x2r =sqrt((tzg2+f.^4)./(tzg2.*g2_1mug2_2+(muf2g2-g2_1.*g2_f2).^2));

plot(g,x1r)

hold on

plot(g,x2r);

hold on

%------    zeta = 0.1, mu=0.01 -------------------------------------b

------

zeta = 0.1;

mu = 0.1; 0.001:1.3;

g = 0.6:

tzg2 = (2.*zeta.*g).^2 ;% --- tzg2 = (2*zeta*g)^2

g2_f2_2 = (g.^2-f.^2).^2 ;% g2_f2_2 = (g^2-f^2)^2

g2_1mug2_2 = (g.^2-1+mu.*g.^2).^2;

muf2g2 = mu.*f.^2*g.^2 ;

g2_1 = g.^2-1 ;

g2_f2 = g.^2-f.^2 ;

x1r =sqrt((tzg2+g2_f2_2)./(tzg2.*g2_1mug2_2+(muf2g2-g2_1.*g2_f2).^2));

x2r =sqrt((tzg2+f.^4)./(tzg2.*g2_1mug2_2+(muf2g2-g2_1.*g2_f2).^2));

plot(g,x1r,'-.');

hold on

plot(g,x2r,'-.');

hold on

%------   zeta = 0.5, mu=0.05 -------------------------------------b

------

zeta = 0.5;

mu = 0.05;

g = 0.6 : 0.001 : 1.3;

tzg2 = (2.*zeta.*g).^2 ;% --- tzg2 = (2*zeta*g)^2

g2_f2_2 = (g.^2-f.^2).^2) ;% g2_f2_2 = (g^2-f^2)^2

g2_1mug2_2 = (g.^2-1+mu.*g.^2).^2;

muf2g2 = mu.*f.^2*g.^2;

g2_1 = g.^2-1 ;

g2_f2 = g.^2-f.^2;

x1r =sqrt((tzg2+g2_f2_2)./(tzg2.*g2_1mug2_2+(muf2g2-g2_1.*g2_f2).^2));

x2r =sqrt((tzg2+f.^4)./(tzg2.*g2_1mug2_2+(muf2g2-g2_1.*g2_f2).^2));

plot(g,x1r,' ');

hold on

m = m2/m1 = 0.05

f = va/vn = 1, z = 0.1
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plot(g,x2r,' ');

hold on

%------    zeta = 0.5, mu=0.1 --------------------------------------b

------

zeta = 0.5;

mu = 0.1;

g = 0.6 : 0.001 : 1.3;

tzg2 = (2.*zeta.*g).^2 ;% --- tzg2 = (2*zeta*g)^2

g2_f2_2 = (g.^2-f.^2).^2 ;% g2_f2_2 = (g^2-f^2)^2

g2_1mug2_2 = (g.^2-1+mu.*g.^2).^2 ;

muf2g2 = mu.*f.^2*g.^2 ;

g2_1 = g.^2-1 ;

g2_f2 = g.^2-f.^2 ;

x1r =sqrt((tzg2+g2_f2_2)./(tzg2.*g2_1mug2_2+(muf2g2-g2_1.*g2_f2).^2));

x2r =sqrt((tzg2+f.^4)./(tzg2.*g2 1mug2 2+(muf2g2-g2 1.*g2 f2).^2));

plot(g,x1r,':');

hold on

plot(g,x2r,':');

xlabel('g')

ylabel('X1r and X2r')

axis ([0.6 1.3 0 16])

X2r, zeta * 0.1, mu * 0.1

X1r, zeta * 0.1, mu * 0.1

X2r
zeta * 0.1
mu * 0.05

X2r
zeta * 0.5
mu * 0.1

X2r
zeta * 0.5
mu * 0.05

X1r
zeta * 0.5
mu * 0.05

X1r
zeta * 0.5
mu * 0.1

X1r
zeta * 0.1
mu * 0.05

16
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4

2

0
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X
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a
n

d
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E X A M P L E  9 . 1 9
Resonant Frequencies of Vibration Absorber

Using MATLAB, plot the variations of the resonant frequency ratios given by Eq. (9.146) with the

mass ratio, 

Solution: The ratios and given by Eq. (9.146), are plotted for 1.0, and

2.0 over the range of to 1.

%------ omega2/omega1=0.5 ------------------------------------------b

---

omega21=0.5

m21 = 0:0.001:1.0

X11 = sqrt(((1 + (1+m21)*omega21.^2) +((1+(1+m21).*omega21.^2).^2-b

4.*omega21.^2).^0.5)...

/(2.*omega21.^2))

plot(m21,X11,':')

axis([0 1.0 0.0 2.6])

hold on

X12 = sqrt(((1+(1+m21)*omega21.^2) - ((1 + (1+m21).*omega21.^2).^2-b

4.*omega21.^2).^0.5)...

/(2.*omega21.^2))

plot(m21,X12,':')

hold on

%------ omega2/omega1=1.0 ------------------------------------------b

---

omega21=1.0

m21 = 0:0.001:1.0

X21 = sqrt(((1+(1+m21)*omega21.^2) +((1+(1+m21).*omega21.^2).^2-b

4.*omega21.^2).^0.5)...

/(2.*omega21.^2))

plot(m21,X21,'-')

axis([0 1.0 0.0 2.6])

hold on

X22 = sqrt(((1+(1+m21)*omega21.^2) -((1+(1+m21).*omega21.^2).^2-b

4.*omega21.^2).^0.5)...

/(2.*omega21.^2))

plot(m21,X22,'-')

hold on

%------ omega2/omega1=2.0 ------------------------------------------b

---

omega21=2.0

m21 = 0 : 0.001 : 1.0

X31 = sqrt(((1+(1+m21)*omega21.^2) +((1+(1+m21).*omega21.^2).^2).b

^2 4.*omega21.^2).^0.5)...

/ (2.*omega21.^2))

plot(m21,X31,' .')

axis([0 1.0 0.0 2.6])

hold on

X32 = sqrt(((1+(1+m21)*omega21.^2) -((1+(1+m21).*omega21.^2).^2 4.b

*omega21.^2) .^0.5)...

/(2.*omega21.^2))

plot(m21,X32,' .')

hold on

xlabel ('mr')

ylabel ('OM1 and OM2')

m2/m1 = 0

v2/v1 = 0.5,Æ2/v2,Æ1/v2

m2/m1.
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*

E X A M P L E  9 . 2 0
Two-Plane Balancing

Develop a general MATLAB program called Program13.m for the two-plane balancing of rotating

machines. Use the program to solve Example 9.2.

Solution: Program13.m is developed to accept the vectors and as

input in the form of two-dimensional arrays VA, VB, VAP, VBP, VAPP, VBPP, WL, WR, BL, and BR,

respectively. The program gives the vectors and as output in the form of two-dimensional

arrays BL and BR indicating the magnitude and position of the balancing weights in the left and right

planes, respectively. The listing of the program and the output are given below.

%=====================================================================

%

% Program13.m

% Two-plane balancing

%

%=====================================================================

% Run Program13  in MATLAB command window. Progrm13.m, balan.m,

vsub.m,

% vdiv.m and vmult.m should be in the same folder,and set the

MATLAB path

% to this folder.

% following 8 lines contain problem-dependent data

va=[8.5 60];

vap=[6 125];

wl=[10 270];

vb=[6.5 205];

BRBL

W
!

RV
!

 A, V
!

B, V
!

A , V
!

B, V
!

A , V
!

B , W
!

L,

2.5

2

1.5

1

0.5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

OM2 for mr * 0.5

OM2 for mr * 1.0

OM2 for mr * 2.0

OM1 for mr * 1.0

OM1 for mr * 2.0

OM1 for mr * 0.5

O
M

1
 a

n
d

 O
M

2

mr
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vbp=[4.5 230];

vapp=[6 35];

vbpp=[10.5 160];

wr=[12 180];

% end of problem-dependent data

[bl,br]=balan(va,vb,vap,vbp,vapp,vbpp,wl,wr);

fprintf(' Results of two-plane balancing \n\n');

fprintf('Left-plane balancing weight Right-plane balancing weight');

fprintf('\n\n');

fprintf('Magnitude=%8.6f Magnitude=%8.6f \n\n',b1(1),br(1));

fprintf('Angel=%8.6f Angle=%8.6f \n\n',b1(2),br(2));

%=====================================================================

%

%Function Balan.m

%

%=====================================================================

function [b1,br]=balan(va,vb,vap,vbp,vapp,vbpp,wl,wr);

pi=180/3.1415926;

va(2)=va(2)/pi;

p(1)=va(1);

p(2)=va(2);

va(1)=p(1)*cos(p(2));

va(2)=p(1)*sin(p(2));

vb(2)=vb(2)/pi;

p(1)=vb(1);

p(2)=vb(2);

vb(1)=p(1)*cos(p(2));

vb(2)=p(1)*sin(p(2));

vap(2)=vap(2)/pi;

p(1)=vap(1);

p(2)=vap(2);

vap(1)=p(1)*cos(p(2));

vap(2)=p(1)*sin(p(2));

vbp(2)=vbp(2)/pi;

p(1)=vbp(1);

p(2)=vbp(2);

vbp(1)=p(1)*cos(p(2));

vbp(2)=p(1)*sin(p(2));

vapp(2)=vapp(2)/pi;

p(1)=vapp(1);

p(2)=vapp(2);

vapp(1)=p(1)*cos(p(2));

vapp(2)=p(1)*sin(p(2));

vbpp(2)=vbpp(2)/pi;

p(1)=vbpp(1);

p(2)=vbpp(2);

vbpp(1)=p(1)*cos(p(2));

vbpp(2)=p(1)*sin(p(2));

w1(2)=w1(2)/pi;

p(1)=w1(1);

p(2)=w1(2);

w1(1)=p(1)*cos(p(2));

w1(2)=p(1)*sin(p(2));

wr(2)=wr(2)/pi;

p(1)=wr(1);

p(2)=wr(2);

wr(1)=p(1)*cos(p(2));

wr(2)=p(1)*sin(p(2));

[r]=vsub(vap,va);

[aal]=vdiv(r,wl);

[s]=vsub(vbp,vb);

[abl]=vdiv(s,wl);

[p]=vsub(vapp,va);

[aar]=vdiv(p,wr);

[q]=vsub(vbpp,vb);

[abr]=vdiv(q,wr);
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[ar1]=sqrt(aar(1)^2+aar(2)^2);

[ar2]=atan(aar(2)/aar(1))*pi;

[al1]=sqrt(aal(1)^2+aal(2)^2);

[al2]=atan(aal(2)/aal(1))*pi;

[r]=vmult(abl,va);

[s]=vmult(aal,vb);

[vap]=vsub(r,s);

[r]=vmult(aar,abl);

[s]=vmult(aal,abr);

[vbp]=vsub(r,s);

[ur]=vdiv(vap,vbp);

[r]=vmult(abr,va);

[s]=vmult(aar,vb);

[vap]=vsub(r,s);

[r]=vmult(abr,aal);

[s]=vmult(aar,abl);

[vbp]=vsub(r,s);

[ul]=vdiv(vap,vbp);

bl(1)=sqrt(ul(1)^2+ul(2)^2);

a1=ul(2)/ul(1);

bl(2)=atan(ul(2)/ul(1));

br(1)=sqrt(ur(1)^2+ur(2)^2);

a2=ur(2)/ur(1);

br(2)=atan(ur (2)/ur (1));

bl(2)=bl(2)*pi;

br(2)=br(2)*pi;

bl(2)=bl(2)+180;

br(2)=br(2)+180;

%=====================================================================

%

%Function vdiv.m

%

%=====================================================================

function [c]=vdiv(a,b);

c(1)=(a(1)*b(1)+a(2)*b(2))/(b(1)^2+b(2)^2);

c(2)=(a(2)*b(1) a(1)*b(2))/(b(1)^2+b(2)^2);

%=====================================================================

%

%Function vmult.m

%

%=====================================================================

function [c]=vmult(a,b);

c(1)=a(1)*b(1) a(2)*b(2);

c(2)=a(2)*b(1)+a(1)*b(2);

%=====================================================================

%

%Function vsub.m

%

%=====================================================================

function [c]=vsub(a,b);

c(1)=a(1) b(1);

c(2)=a(2) b(2);

Results of two-plane balancing

Left-plane balancing weight Right-plane balancing weight

Magnitude=10.056139 Magnitude=5.877362

Angle=145.554799 Angle=248.255931

*
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CHAPTER SUMMARY

We discussed the use of vibration nomographs and vibration criteria to determine acceptable levels

of vibration. We presented several methods, such as balancing of rotating and reciprocating

machines, to eliminate/reduce vibration at the source. We outlined methods of changing mass and/or

stiffness and dissipating energy by adding damping. We discussed methods of designing vibration

isolators, vibration absorbers, and active vibration-control systems. We presented the solution of

vibration-control problems using MATLAB.

Now that you have finished this chapter, you should be able to answer the review questions and

solve the problems given below.

REFERENCES

9.1 J. E. Ruzicka, Fundamental concepts of vibration control,  Sound and Vibration, Vol. 5, July

1971, pp. 16 22.

9.2 J. A. Macinante, Seismic Mountings for Vibration Isolation, Wiley, New York, 1984.

9.3 International Organization for Standardization, Mechanical Vibration of Machines with Oper-

ating Speeds from 10 to 200 rev/s Basis for Specifying Evaluation Standards, ISO 2372, 1974.

9.4 International Organization for Standardization, Evaluation and Measurement of Vibration in

Buildings, Draft Proposal, ISO DP 4866, 1975.

9.5 R. J. Steffens, Some aspects of structural vibration,  in Proceedings of the Symposium on

Vibrations in Civil Engineering, B. O. Skipp (ed.), Butterworths, London, 1966, pp. 1 30.

9.6 International Organization for Standardization, Guide for the Evaluation of Human Exposure

to Whole-Body Vibration, ISO 2631, 1974.

9.7 C. Zenz, Occupational Medicine: Principles and Practical Application (2nd ed.), Year Book

Medical Publishers, Chicago, 1988.

9.8 R. L. Fox, Machinery vibration monitoring and analysis techniques,  Sound and Vibration,

Vol. 5, November 1971, pp. 35 40.

9.9 D. G. Stadelbauer, Dynamic balancing with microprocessors,  Shock and Vibration Digest,

Vol. 14, December 1982, pp. 3 7.

9.10 J. Vaughan, Static and Dynamic Balancing (2nd ed.), Bruel and Kjaer Application Notes,

Naerum, Denmark.

9.11 R. L. Baxter, Dynamic balancing,  Sound and Vibration, Vol. 6, April 1972, pp. 30 33.

9.12 J. H. Harter and W. D. Beitzel, Mathematics Applied to Electronics, Reston Publishing,

Reston, VA, 1980.

9.13 R. G. Loewy and V. J. Piarulli, Dynamics of rotating shafts,  Shock and Vibration Mono-

graph SVM-4, Shock and Vibration Information Center, Naval Research Laboratory, Wash-

ington, DC, 1969.

9.14 J. D. Irwin and E. R. Graf, Industrial Noise and Vibration Control, Prentice Hall, Englewood

Cliffs, NJ, 1979.

9.15 T. Iwatsuba, Vibration of rotors through critical speeds,  Shock and Vibration Digest, Vol. 8,

No. 2, February 1976, pp. 89 98.

M09_RAO08193_5_SE_C09.qxd  8/22/10  1:01 PM  Page 851



852 CHAPTER 9 VIBRATION CONTROL

9.16 R. J. Trivisonno, Fortran IV computer program for calculating critical speeds of rotating

shafts,  NASA TN D-7385, 1973.

9.17 R. E. D. Bishop and G. M. L. Gladwell, The vibration and balancing of an unbalanced flexi-

ble rotor,  Journal of Mechanical Engineering Science, Vol. 1, 1959, pp. 66 77.

9.18 A. G. Parkinson, The vibration and balancing of shafts rotating in asymmetric bearings,

Journal of Sound and Vibration, Vol. 2, 1965, pp. 477 501.

9.19 C. E. Crede, Vibration and Shock Isolation, Wiley, New York, 1951.

9.20 W. E. Purcell, Materials for noise and vibration control,  Sound and Vibration, Vol. 16, July

1982, pp. 6 31.

9.21 B. C. Nakra, Vibration control with viscoelastic materials,  Shock and Vibration Digest,

Vol. 8, No. 6, June 1976, pp. 3 12.

9.22 G. R. Tomlinson, The use of constrained layer damping in vibration control,  in Modern

Practice in Stress and Vibration Analysis, J. E. Mottershead (ed.), Pergamon Press, Oxford,

1989, pp. 99 107.

9.23 D. E. Baxa and R. A. Dykstra, Pneumatic isolation systems control forging hammer vibra-

tion,  Sound and Vibration, Vol. 14, May 1980, pp. 22 25.

9.24 E. I. Rivin, Vibration isolation of industrial machinery Basic considerations,  Sound and

Vibration, Vol. 12, November 1978, pp. 14 19.

9.25 C. M. Salerno and R. M. Hochheiser, How to select vibration isolators for use as machinery

mounts,  Sound and Vibration, Vol. 7, August 1973, pp. 22 28.

9.26 C. A. Mercer and P. L. Rees, An optimum shock isolator,  Journal of Sound and Vibration,

Vol. 18, 1971, pp. 511 520.

9.27 M. L. Munjal, A rational synthesis of vibration isolators,  Journal of Sound and Vibration,

Vol. 39, 1975, pp. 247 263.

9.28 C. Ng and P. F. Cunniff, Optimization of mechanical vibration isolation systems with multi-

degrees of freedom,  Journal of Sound and Vibration, Vol. 36, 1974, pp. 105 117.

9.29 S. K. Hati and S. S. Rao, Cooperative solution in the synthesis of multidegree of freedom

shock isolation systems,  Journal of Vibration, Acoustics, Stress, and Reliability in Design,

Vol. 105, 1983, pp. 101 103.

9.30 S. S. Rao and S. K. Hati, Optimum design of shock and vibration isolation systems using

game theory,  Journal of Engineering Optimization, Vol. 4, 1980, pp. 1 8.

9.31 J. E. Ruzicka, Active vibration and shock isolation,  Paper no. 680747, SAE Transactions,

Vol. 77, 1969, pp. 2872 2886.

9.32 R. W. Horning and D. W. Schubert, Air suspension and active vibration-isolation systems,  in

Shock and Vibration Handbook (3rd ed.), C. M. Harris (ed.), McGraw-Hill, New York, 1988.

9.33 O. Vilnay, Active control of machinery foundation,  Journal of Engineering Mechanics,

ASCE, Vol. 110, 1984, pp. 273 281.

9.34 J. I. Soliman and M. G. Hallam, Vibration isolation between non-rigid machines and non-

rigid foundations,  Journal of Sound and Vibration, Vol. 8, 1968, pp. 329 351.

9.35 J. Ormondroyd and J. P. Den Hartog, The theory of the dynamic vibration absorber,

Transactions of ASME, Vol. 50, 1928, p. APM-241.

9.36 H. Puksand, Optimum conditions for dynamic vibration absorbers for variable speed systems

with rotating and reciprocating unbalance,  International Journal of Mechanical Engineering

Education, Vol. 3, April 1975, pp. 145 152.

M09_RAO08193_5_SE_C09.qxd  8/22/10  1:01 PM  Page 852



REVIEW QUESTIONS 853

9.37 A. Soom and M.-S. Lee, Optimal design of linear and nonlinear absorbers for damped

systems,  Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 105, 1983,

pp. 112 119.

9.38 J. B. Hunt, Dynamic Vibration Absorbers, Mechanical Engineering Publications, London, 1979.

REVIEW QUESTIONS

9.1 Give brief answers to the following:

1. Name some sources of industrial vibration.

2. What are the various methods available for vibration control?

3. What is single-plane balancing?

4. Describe the two-plane balancing procedure.

5. What is whirling?

6. What is the difference between stationary damping and rotary damping?

7. How is the critical speed of a shaft determined?

8. What causes instability in a rotor system?

9. What considerations are to be taken into account for the balancing of a reciprocating

engine?

10. What is the function of a vibration isolator?

11. What is a vibration absorber?

12. What is the difference between a vibration isolator and a vibration absorber?

13. Does spring mounting always reduce the vibration of the foundation of a machine?

14. Is it better to use a soft spring in the flexible mounting of a machine? Why?

15. Is the shaking force proportional to the square of the speed of a machine? Does the vibra-

tory force transmitted to the foundation increase with the speed of the machine?

16. Why does dynamic balancing imply static balancing?

17. Explain why dynamic balancing can never be achieved by a static test alone.

18. Why does a rotating shaft always vibrate? What is the source of the shaking force?

19. Is it always advantageous to include a damper in the secondary system of a dynamic

vibration absorber?

20. What is active vibration isolation?

21. Explain the difference between passive and active isolation.

9.2 Indicate whether each of the following statements is true or false:

1. Vibration can cause structural and mechanical failures.

2. The response of a system can be reduced by the use of isolators and absorbers.

3. Vibration control means the elimination or reduction of vibration.

4. The vibration caused by a rotating unbalanced disc can be eliminated by adding a suit-

able mass to the disc.

5. Any unbalanced mass can be replaced by two equivalent unbalanced masses in the end

planes of the rotor.

6. The oil whip in the bearings can cause instability in a rotor system.

7. The natural frequency of a system can be changed by varying its damping.

8. The stiffness of a rotating shaft can be altered by changing the location of its bearings.

9. All practical systems have damping.
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10. High loss factor of a material implies less damping.

11. Passive isolation systems require external power to function.

12. The transmissibility is also called the transmission ratio.

13. The force transmitted to the foundation of an isolator with rigid foundation can never be

infinity.

14. Internal and external friction can cause instability in a rotating shaft at speeds above the

first critical speed.

9.3 Fill in each of the following blanks with the appropriate word:

1. Even a small excitation force can cause an undesirably large response near _____.

2. The use of close tolerances and better surface finish for machine parts tends to make a

machine _____ susceptible to vibration.

3. The presence of unbalanced mass in a rotating disc causes _____.

4. When the speed of rotation of a shaft equals one of the natural frequencies of the shaft, it

is called _____ speed.

5. The moving elements of a reciprocating engine are the crank, the connecting rod, and

the _____.

6. The vertical component of the inertia force of a reciprocating engine has primary and

_____ parts.

7. Laminated structures have _____ damping.

8. Materials with a large value of the loss factor are subject to _____ stress.

9. Vibration isolation involves insersion of a resilient member between the vibrating mass

and the _____ of vibration.

10. Cork is a _____ isolator.

11. An active isolator consists of a sensor, a signal processor, and an _____.

12. Vibration neutralizer is also known as dynamic vibration _____.

13. Although an undamped vibration absorber removes the original resonance peak of the

response, it introduces _____ new peaks.

14. The single-plane balancing is also known as _____ balancing.

15. Phase marks are used in _____ plane balancing using a vibration analyzer.

16. Machine errors can cause _____ in rotating machines.

17. The combustion instabilities are a source of _____ in engines.

18. The deflection of a rotating shaft becomes very large at the _____ speed.

19. Oil whip in bearings can cause _____ in a flexible rotor system.

9.4 Select the most appropriate answer out of the multiple choices given:

1. An example of a source of vibration that cannot be altered is:

a. atmospheric turbulance

b. hammer blow

c. tire stiffness of an automobile.

2. The two-plane balancing is also known as:

a. static balancing

b. dynamic balancing

c. proper balancing

3. The unbalanced force caused by an eccentric mass m rotating at an angular speed and

located at a distance r from the axis of rotation is

a. b. c. mrv2mgv2mr2v2

v

M09_RAO08193_5_SE_C09.qxd  8/22/10  1:01 PM  Page 854



PROBLEMS 855

4. The following material has high internal damping:

a. cast iron b. copper c. brass

5. Transmissibility is the ratio of

a. force transmitted and exciting force

b. force applied and the resulting displacement

c. input displacement and output displacement

6. Mechanical impedance is the ratio of

a. force transmitted and exciting force

b. force applied and force transmitted

c. applied force and displacement

7. Vibration can be eliminated on the basis of theoretical analysis

a. sometimes b. always c. never

8. A long rotor can be balanced by adding weights in

a. a single plane b. any two planes c. two specific planes

9. The damping caused by the internal friction of a shaft material is called

a. stationary damping

b. external damping

c. rotary damping

10. The damping caused by the bearing support structure of a rotating shaft is called

a. stationary damping

b. internal damping

c. rotary damping

11. An undamped vibration absorber removes the original resonance peak but introduces

a. one new peak b. two new peaks c. several new peaks

9.5 Match the items in the two columns below.

1. Control natural frequency

2. Avoid excessive response 

at resonance

3. Reduce transmission of 

excitation force from one 

part to another

4. Reduce response of the system

a. Introduce damping

b. Use vibration isolator

c. Add vibration absorber

d. Avoid resonance

PROBLEMS

Section 9.2 Vibration Criteria

9.1 An automobile moving on a rough road, in the form of a sinusoidal surface, is modeled as a

spring-mass system, as shown in Fig. 9.40. The sinusoidal surface has a wave length of 5 m

and an amplitude of If the mass of the automobile, including the passengers, is

1500 kg and the stiffness of the suspension system (k) is 400 kN/m, determine the range of

speed (v) of the automobile in which the passengers perceive the vibration. Suggest possible

methods of improving the design for a more comfortable ride of the passengers.

Y = 1 mm.
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y

(a) (b)
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FIGURE 9.41

m * 1500 kg

k * 400 kN/m

v km/h

x(t)

Y * 1 mm

L * 5 m

FIGURE 9.40

9.2 The root mean square value of a signal is defined as

Using this definition, find the root mean square values of the displacement 

velocity and acceleration corresponding to 

Section 9.4 Balancing of Rotating Machines

9.3 Two identical discs are connected by four bolts of different sizes and mounted on a shaft, as

shown in Fig. 9.41. The masses and locations of three bolts are as follows:

x(t) = X cos vt.(x
$

rms)(x 
#

rms),

(xrms),

xrms = e
lim

T: q

  

1

TL

T

0

 x2
1t2 dt f

1/2

x(t), xrms,
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and and 

and Find the mass and location of the fourth bolt

( and ), which results in the static balance of the discs.

9.4 Four holes are drilled in a uniform circular disc at a radius of 4 in. and angles of 0°, 60°,

120°, and 180°. The weight removed at holes 1 and 2 is 4 oz each and the weight removed at

holes 3 and 4 is 5 oz each. If the disc is to be balanced statically by drilling a fifth hole at a

radius of 5 in., find the weight to be removed and the angular location of the fifth hole.

9.5 Three masses, weighing 0.5 lb, 0.7 lb, and 1.2 lb, are attached around the rim, of diameter 30

in., of a flywheel at the angular locations 100°, and 190°, respectively. Find the

weight and the angular location of the fourth mass to be attached on the rim that leads to the

dynamic balance of the flywheel.

9.6 The amplitude and phase angle due to original unbalance in a grinding wheel operating at

1200 rpm are found to be 10 mils and 40° counterclockwise from the phase mark. When a

trial weight is added at 65° clockwise from the phase mark and at a radial distance

2.5 in. from the center of rotation, the amplitude and phase angle are observed to be 19 mils

and 150° counterclockwise. Find the magnitude and angular position of the balancing

weight if it is to be located 2.5 in. radially from the center of rotation.

9.7 An unbalanced flywheel shows an amplitude of 6.5 mils and a phase angle of 15° clockwise

from the phase mark. When a trial weight of magnitude 2 oz is added at an angular position

45° counterclockwise from the phase mark, the amplitude and the phase angle become 8.8

mils and 35° counterclockwise, respectively. Find the magnitude and angular position of the

balancing weight required. Assume that the weights are added at the same radius.

9.8 In order to determine the unbalance in a grinding wheel, rotating clockwise at 2400 rpm, a

vibration analyzer is used and an amplitude of 4 mils and a phase angle of 45° are observed

with the original unbalance. When a trial weight oz is added at 20° clockwise from

the phase mark, the amplitude becomes 8 mils and the phase angle 145°. If the phase angles

are measured counterclockwise from the right-hand horizontal, calculate the magnitude and

location of the necessary balancing weight.

9.9 A turbine rotor is run at the natural frequency of the system. A stroboscope indicates that the

maximum displacement of the rotor occurs at an angle 229° in the direction of rotation. At

what angular position must mass be removed from the rotor in order to improve its balancing?

9.10 A rotor, having three eccentric masses in different planes, is shown in Fig. 9.42. The axial,

radial, and angular locations of mass are given by and respectively, for

If the rotor is to be dynamically balanced by locating two masses and at

radii and at the angular locations and as shown in Fig. 9.42, derive expres-

sions for and 

9.11 The rotor shown in Fig. 9.43(a) is balanced temporarily in a balancing machine by adding

the weights in the plane A and in the plane D at a

radius of 3 in., as shown in Fig. 9.43(b). If the rotor is permanently balanced by drilling

holes at a radius of 4 in. in planes B and C, determine the position and amount of material to

be removed from the rotor. Assume that the adjustable weights to will be removed

from the planes A and D.

9.12 Weights of 2 lb, 4 lb, and 3 lb are located at radii 2 in., 3 in., and 1 in. in the planes C, D, and

E, respectively, on a shaft supported at the bearings B and F, as shown in Fig. 9.44. Find the

weights and angular locations of the two balancing weights to be placed in the end planes A

and G so that the dynamic load on the bearings will be zero.

W4W1

W3 = W4 = 0.2 lbW1 = W2 = 0.2 lb

ub2.ub1,mb2rb2,mb1rb1,

ub2,ub1rb2rb1

mb2mb1i = 1, 2, 3.

ui,li, ri,mi

W = 4

W = 6 oz

u = 10°,

ucmc, rc,

m3 = 25 grams, r3 = 130 mm, u3 = 290°.

u2 = 220°;u1 = 40°; m2 = 15 grams, r2 = 90 mm,m1 = 35 grams, r1 = 110 mm,
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A B C D

4* 4*16*

30

30

60

W3

W4

W2

W1

y

x
3*

(a) (b)

FIGURE 9.43

B A
y

y

x

m2 m2

mb2

mb1

rb2

rb1

r3

r2

r1

m3
m3

m1 m1mb2

mb1

z

l2
l3lb2

u2

u1

u3

ub2

ub1

l1

FIGURE 9.42

A

B

C D E

F

G

D

E

C

v

16* 8* 32* 24* 16* 8*

3*

2*

1*

2 lb

3 lb

4 lb

30 40 

FIGURE 9.44
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Amplitude (mils) Phase Angle

Condition Bearing A Bearing B Bearing A Bearing B

Original unbalance 5 4 100° 180°

added at 30° in the left planeWL = 2 oz 6.5 4.5 120° 140°

added at 0° in the right planeWR = 2 oz 6 7 90° 60°

9.13 The data obtained in a two-plane balancing procedure are given in the table below. Deter-

mine the magnitude and angular position of the balancing weights, assuming that all angles

are measured from an arbitrary phase mark and all weights are added at the same radius.

9.14 Figure 9.45 shows a rotating system in which the shaft is supported in bearings at A and B.

The three masses and are connected to the shaft as indicated in the figure. (a)

Find the bearing reactions at A and B if the speed of the shaft is 1000 rpm. (b) Determine the

locations and magnitudes of the balancing masses to be placed at a radius of 0.25 m in the

planes L and R, which can be assumed to pass through the bearings A and B.

m3m1, m2,

20
cm

30
cm

40
cm

20
cm

m1 * 50 g

r1 * 8 cm
r2 * 5 cm

r3 * 6 cm

m2 * 20 g

m3 * 40 g

y
L

A

z

x
B

R

30 20 

FIGURE 9.45

Section 9.5 Whirling of Rotating Shafts

9.15 A flywheel, with a weight of 100 lb and an eccentricity of 0.5 in., is mounted at the center of

a steel shaft of diameter 1 in. If the length of the shaft between the bearings is 30 in. and the

rotational speed of the flywheel is 1200 rpm, find (a) the critical speed, (b) the vibration

amplitude of the rotor, and (c) the force transmitted to the bearing supports.

9.16 Derive the expression for the stress induced in a shaft with an unbalanced concentrated mass

located midway between two bearings.

9.17 A steel shaft of diameter 2.5 cm and length 1 m is supported at the two ends in bearings. It

carries a turbine disc, of mass 20 kg and eccentricity 0.005 m, at the middle and operates at

6000 rpm. The damping in the system is equivalent to viscous damping with 

Determine the whirl amplitude of the disc at (a) operating speed, (b) critical speed, and (c)

1.5 times the critical speed.

z = 0.01.
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4* 2* 2* 4*

1 2 3 4

Reference plane

1 v

2

3

4

FIGURE 9.46

9.18 Find the bearing reactions and the maximum bending stress induced in the shaft at (a) oper-

ating speed, (b) critical speed, and (c) 1.5 times the critical speed for the shaft-rotor system

described in Problem 9.17.

9.19 Solve Problem 9.17 by assuming that the material of the shaft is aluminum rather than steel.

9.20 Solve Problem 9.18 by assuming that the material of the shaft is aluminum rather than steel.

9.21 A shaft, having a stiffness of 3.75 MN/m, rotates at 3600 rpm. A rotor, having a mass of 60

kg and an eccentricity of 2000 microns, is mounted on the shaft. Determine (a) the steady-

state whirl amplitude of the rotor and (b) the maximum whirl amplitude of the rotor during

start-up and stopping conditions. Assume the damping ratio of the system as 0.05.

Section 9.6 Balancing of Reciprocating Engines

9.22 The cylinders of a four-cylinder in-line engine are placed at intervals of 12 in. in the axial

direction. The cranks have the same length, 4 in., and their angular positions are given by 0°,

180°, 180°, and 0°. If the length of the connecting rod is 10 in. and the reciprocating weight

is 2 lb for each cylinder, find the unbalanced forces and moments at a speed of 3000 rpm,

using the center line through cylinder 1 as the reference plane.

9.23 The reciprocating mass, crank radius, and connecting-rod length of each of the cylinders in

a two-cylinder in-line engine are given by m, r, and l, respectively. The crank angles of the

two cylinders are separated by 180°. Find the unbalanced forces and moments in the engine.

9.24 A four-cylinder in-line engine has a reciprocating weight of 3 lb, a stroke of 6 in., and a

connecting-rod length of 10 in. in each cylinder. The cranks are separated by 4 in. axially and

90° radially, as shown in Fig. 9.46. Find the unbalanced primary and secondary forces and

moments with respect to the reference plane shown in Fig. 9.46 at an engine speed of 1500 rpm.

9.25 The arrangement of cranks in a six-cylinder in-line engine is shown in Fig. 9.47. The cylin-

ders are separated by a distance a in the axial direction, and the angular positions of the

cranks are given by and If the crank

length, connecting-rod length, and the reciprocating mass of each cylinder are r, l, and m,

respectively, find the primary and secondary unbalanced forces and moments with respect to

the reference plane indicated in Fig. 9.47.

a3 = a4 = 240°.a1 = a6 = 0°, a2 = a5 = 120°,
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9.26 A single-cylinder engine has a total mass of 150 kg. Its reciprocating mass is 5 kg, and the

rotating mass is 2.5 kg. The stroke (2r) is 15 cm, and the speed is 600 rpm. (a) If the engine

is mounted floating on very weak springs, what is the amplitude of vertical vibration of the

engine? (b) If the engine is mounted solidly on a rigid foundation, what is the alternating

force amplitude transmitted? Assume the connecting rod to be of infinite length.

Section 9.10 Vibration Isolation

9.27 An electronic instrument is to be isolated from a panel that vibrates at frequencies ranging

from 25 Hz to 35 Hz. It is estimated that at least 80 percent vibration isolation must be

achieved to prevent damage to the instrument. If the instrument weights 85 N, find the nec-

essary static deflection of the isolator.

9.28* An exhaust fan, having a small unbalance, weights 800 N and operates at a speed of 600 rpm.

It is desired to limit the response to a transmissibility of 2.5 as the fan passes through reso-

nance during start-up. In addition, an isolation of 90 percent is to be achieved at the operat-

ing speed of the fan. Design a suitable isolator for the fan.

9.29* An air compressor of mass 500 kg has an eccentricity of 50 kg-cm and operates at a speed

of 300 rpm. The compressor is to be mounted on one of the following mountings: (a) an iso-

lator consisting of a spring with negligible damping, and (b) a shock absorber having a

damping ratio of 0.1 and negligible stiffness. Select a suitable mounting and specify the

design details by considering the static deflection of the compressor, the transmission ratio,

and the amplitude of vibration of the compressor.

9.30 The armature of a variable-speed electric motor, of mass 200 kg, has an unbalance due to

manufacturing errors. The motor is mounted on an isolator having a stiffness of 10 kN/m

and a dashpot having a damping ratio of 0.15. (a) Find the speed range over which the ampli-

tude of the fluctuating force transmitted to the foundation will be larger than the exciting

force. (b) Find the speed range over which the transmitted force amplitude will be less than

10 percent of the exciting force amplitude.

9.31 A dishwashing machine weighing 150 lb operates at 300 rpm. Find the minimum static

deflection of an isolator that provides 60 percent isolation. Assume that the damping in the

isolator is negligible.

9.32 A washing machine of mass 50 kg operates at 1200 rpm. Find the maximum stiffness of an

isolator that provides 75 percent isolation. Assume that the damping ratio of the isolator is 7

percent.

*The asterisk denotes a problem with no unique answer.

a a a a a

2 3 4 5 61 1, 6
v

2, 5 3, 4

120 120 

120 

FIGURE 9.47
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9.33 It is found that an exhaust fan, of mass 80 kg and operating speed 1000 rpm, produces a

repeating force of 10,000 N on its rigid base. If the maximum force transmitted to the base is

to be limited to 2000 N using an undamped isolator, determine (a) the maximum permissible

stiffness of the isolator that serves the purpose; (b) the steady-state amplitude of the exhaust

fan with the isolator that has the maximum permissible stiffness; and (c) the maximum

amplitude of the exhaust fan with isolation during start-up.

9.34 It has been found that a printing press, of mass 300 kg and operating speed 3000 rpm, pro-

duces a repeating force of 30,000 N when attached to a rigid foundation. Find a suitable vis-

cously damped isolator to satisfy the following requirements: (a) the static deflection should

be as small as possible; (b) the steady-state amplitude should be less than 2.5 mm; (c) the

amplitude during start-up conditions should not exceed 20 mm; and (d) the force transmitted

to the foundation should be less than 10,000 N.

9.35 A compressor of mass 120 kg has a rotating unbalance of 0.2 kg-m. If an isolator of stiffness

0.5 MN/m and damping ratio 0.06 is used, find the range of operating speeds of the com-

pressor over which the force transmitted to the foundation will be less than 2500 N.

9.36 An internal combustion engine has a rotating unbalance of 1.0 kg-m and operates between

800 and 2000 rpm. When attached directly to the floor, it transmitted a force of 7,018 N at

800 rpm and 43,865 N at 2000 rpm. Find the stiffness of the isolator that is necessary to

reduce the force transmitted to the floor to 6,000 N over the operating-speed range of the

engine. Assume that the damping ratio of the isolator is 0.08, and the mass of the engine is

200 kg.

9.37 A small machine tool of mass 100 kg operates at 600 rpm. Find the static deflection of an

undamped isolator that provides 90 percent isolation.

9.38 A diesel engine of mass 300 kg and operating speed 1800 rpm is found to have a rotating

unbalance of 1 kg-m. It is to be installed on the floor of an industrial plant for purposes of

emergency power generation. The maximum permissible force that can be transmitted to the

floor is 8000 N and the only type of isolator available has a stiffness of 1 MN/m and a damp-

ing ratio of 5 percent. Investigate possible solutions to the problem.

9.39 The force transmitted by an internal combustion engine of mass 500 kg, when placed directly

on a rigid floor, is given by

Design an undamped isolator so that the maximum magnitude of the force transmitted to the

floor does not exceed 12,000 N.

9.40 Design the suspension of an automobile such that the maximum vertical acceleration felt

by the driver is less than 2g at all speeds between 40 and 80 mph while traveling on a

road whose surface varies sinusoidally as where u is the horizontal

distance in feet. The weight of the automobile, with the driver, is 1500 lb and the damp-

ing ratio of the suspension is to be 0.05. Use a single-degree-of-freedom model for the

automobile.

9.41 Consider a single-degree-of-freedom system with Coulomb damping (which offers a con-

stant friction force, ). Derive an expression for the force transmissibility when the mass is

subjected to a harmonic force, 

9.42 Consider a single-degree-of-freedom system with Coulomb damping (which offers a con-

stant friction force, ). Derive expressions for the absolute and relative displacement trans-

missibilities when the base is subjected to a harmonic displacement, y(t) = Y sin vt.

Fc

F(t) = F0 sin vt.

Fc

y(u) = 0.5 sin 2u ft,

Ft1t2 = 118000 cos 300t + 3600 cos 600 t2N
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9.43 When a washing machine, of mass 200 kg and an unbalance 0.02 kg-m, is mounted on an iso-

lator, the isolator deflects by 5 mm under the static load. Find (a) the amplitude of the washing

machine and (b) the force transmitted to the foundation at the operating speed of 1200 rpm.

9.44 An electric motor, of mass 60 kg, rated speed 3000 rpm, and an unbalance 0.002 kg-m, is to

be mounted on an isolator to achieve a force transmissibility of less than 0.25. Determine (a)

the stiffness of the isolator, (b) the dynamic amplitude of the motor, and (c) the force trans-

mitted to the foundation.

9.45 An engine is mounted on a rigid foundation through four springs. During operation, the

engine produces an excitation force at a frequency of 3000 rpm. If the weight of the engine

causes the springs to deflect by 10 mm, determine the reduction in the force transmitted to

the foundation.

9.46 A sensitive electronic system, of mass 30 kg, is supported by a spring-damper system on the

floor of a building that is subject to a harmonic motion in the frequency range 10 75 Hz. If

the damping ratio of the suspension is 0.25, determine the stiffness of the suspension if the

amplitude of vibration transmitted to the system is to be less than 15 percent of the floor

vibration over the given frequency range.

9.47 A machine weighing 2600 lb is mounted on springs. A piston of weight moves

up and down in the machine at a speed of 600 rpm with a stroke of 15 in. Considering the

motion to be harmonic, determine the maximum force transmitted to the foundation if (a)

and (b) 

9.48 A printed circuit board of mass 1 kg is supported to the base through an undamped isolator.

During shipping, the base is subjected to a harmonic disturbance (motion) of amplitude 2

mm and frequency 2 Hz. Design the isolator so that the displacement transmitted to the

printed circuit board is to be no more than 5 percent of the base motion.

9.49 An electronic instrument of mass 10 kg is mounted on an isolation pad. If the base of the iso-

lation pad is subjected to a shock in the form of a step velocity of 10 mm/s, find the stiffness

of the isolation pad if the maximum permissible values of deflection and acceleration of the

instrument are specified as 10 mm and 20g, respectively.

9.50 A water tank of mass kg is supported on a reinforced cement concrete column, as shown in

Fig. 9.48(a). When a projectile hits the tank, it causes a shock, in the form of a step force, as

shown in Fig. 9.48(b). Determine the stiffness of the column if the maximum deflection of the

tank is to be limited to 0.5 m. The response spectrum of the shock load is shown in Fig. 9.48(c).

9.51 A viscously damped single-degree-of-freedom system has a body (mass) weighing 60 lb with

a spring constant of 400 lb/in. It s base is subjected to harmonic vibration. (a) When the base

vibrates with an amplitude of 2.0 in. at resonance, the steady-state amplitude of the body is

found to be 5.0 in. Find the damping ratio of the system. (b) When the base vibrates at a fre-

quency of 10 Hz, the steady-state amplitude of the body is found to be 1.5 in. Find the mag-

nitude of the force transmitted to the base.

9.52 A single-degree-of-freedom system is used to represent an automobile, of mass m, damping

constant c, and stiffness k, which travels on a rough road that is in the form of a sinusoidal sur-

face with an amplitude Y and wavelength l. If the automobile travels at a velocity v, derive an

expression for the transmissibility of the vertical motion of the automobile mass (m).

9.53 A sensitive instrument of mass 100 kg is installed at a location that is subjected to harmonic

motion with frequency 20 Hz and acceleration If the instrument is supported on an

isolator having a stiffness and a damping ratio determine the

maximum acceleration experienced by the instrument.

z = 0.05,k = 25 * 104 N/m

0.5 m/s2.

105

k = 25000 lb/in.k = 10000 lb/in.,

w = 60 lb
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FIGURE 9.48

9.54 An electronic instrument of mass 20 kg is to be isolated from engine vibrations with fre-

quencies ranging from 1000 rpm to 3000 rpm. Find the stiffness of the undamped isolator to

be used to achieve a 90% isolation.

9.55 A delicate instrument weighing 200 N is suspended by four identical springs, each with stiff-

ness 50,000 N/m, in a rigid box as shown in Fig. 9.49. The box is transported by a truck. If

the truck is subjected to a vertical harmonic motion given by find the

maximum displacement, velocity, and acceleration experienced by the instrument.

9.56 A damped torsional system is composed of a shaft and a rotor (disk). The torsional stiffness

and the torsional damping constant of the shaft are given by and

The mass moment of inertia of the rotor is The rotor is

subjected to a harmonically varying torque of magnitude which results in a

steady-state angular displacement of 5°. Find the frequency of the harmonically varying

torque applied to the rotor and the maximum torque transmitted to the base or support of

the system.

Mt = 500 N-m,

J0 = 5 kg-m2
.ct = 100 N-m-s/rad.

k t = 6000 N-m/rad

y(t) = 0.02 sin 10tm,
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9.57 The force transmissibility of a damped single-degree-of-freedom system with base motion is

given by Eq. (9.106):

where is the magnitude of the force transmitted to the mass. Determine the frequency ratios (r)

at which the force transmissibility attains maximum and minimum values. Discuss your results.

9.58 Derive an expression for the relative displacement transmissibility, where for

a damped single-degree-of-freedom system subjected to the base motion, 

9.59 During operation, the compressor unit of a refrigerator, with mass 75 kg and rotational speed

900 rpm, experiences a dynamic force of 200 N. The compressor unit is supported on four

identical springs, each with a stiffness of k and negligible damping. Find the value of k if

only 15% of the dynamic force is to be transmitted to the support or base. Also, find the

clearance space to be provided to the compressor unit.

9.60 An electronic instrument, of mass 20 kg, is to be isolated to achieve a natural frequency of

15 rad/s and a damping ratio of 0.95. The available dashpots can produce a damping con-

stant (c) in the range 10 N-s/m to 80 N-s/m. Determine whether the desired damping ratio

can be achieved using a passive system. If a passive system cannot be used, design a suitable

active control system to achieve the desired damping ratio.

9.61 A damped single-degree-of-freedom system has a mass (m) of 5 kg, stiffness (k) of 20 N/m,

and a damping constant (c) of 5 N-s/m. Design an active controller to achieve a settling time

less than 15 s for the closed loop system.

Hint: The settling time is defined by Eqs. (4.68) and (4.69).

9.62 A damped single-degree-of-freedom system has an undamped natural frequency of 20 rad/s

and a damping ratio of 0.20. Design an active control system which achieves an undamped

natural frequency of 100 rad/s and a damping ratio of 0.8. Assume that the mass, stiffness,

and damping constant of the original system remain in place.

y(t) = Y sin vt.

Z = X - Y,
Z

Y
,

Ft

Tf =
Ft

kY
= r2

b

1 + (2zr)2

(1 - r2)2
+ (2zr)2

r

1
2

Rigid box

Truck bed

m

k

k

k

k
x(t)

y(t) * 0.02 sin 10 m

FIGURE 9.49
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Section 9.11 Vibration Absorbers

9.63 An air compressor of mass 200 kg, with an unbalance of 0.01 kg-m, is found to have a large

amplitude of vibration while running at 1200 rpm. Determine the mass and spring constant

of the absorber to be added if the natural frequencies of the system are to be at least 20 per-

cent from the impressed frequency.

9.64 An electric motor, having an unbalance of 2 kg-cm, is mounted at the end of a steel can-

tilever beam, as shown in Fig. 9.50. The beam is observed to vibrate with large amplitudes at

the operating speed of 1500 rpm of the motor. It is proposed to add a vibration absorber to

reduce the vibration of the beam. Determine the ratio of the absorber mass to the mass of the

motor needed in order to have the lower frequency of the resulting system equal to 75 per-

cent of the operating speed of the motor. If the mass of the motor is 300 kg, determine the

stiffness and mass of the absorber. Also find the amplitude of vibration of the absorber mass.

9.65* The pipe carrying feedwater to a boiler in a thermal power plant has been found to vibrate

violently at a pump speed of 800 rpm. In order to reduce the vibrations, an absorber consist-

ing of a spring of stiffness and a trial mass of 1 kg is attached to the pipe. This arrange-

ment is found to give the natural frequencies of the system as 750 rpm and 1000 rpm. It is

desired to keep the natural frequencies of the system outside the operating speed range of the

pump, which is 700 rpm to 1040 rpm. Determine the values of and that satisfy this

requirement.

m2k2

m2k2

k
2

m
2

v

FIGURE 9.50

9.66 A reciprocating engine is installed on the first floor of a building, which can be modeled as

a rigid rectangular plate resting on four elastic columns. The equivalent weight of the

engine and the floor is 2000 lb. At the rated speed of the engine, which is 600 rpm, the oper-

ators experience large vibration of the floor. It has been decided to reduce these vibrations

by suspending a spring-mass system from the bottom surface of the floor. Assume that the

spring stiffness is (a) Find the weight of the mass to be attached to absorb

the vibrations. (b) What will be the natural frequencies of the system after the absorber is

added?

9.67* Find the values of and in Problem 9.54 in order to have the natural frequencies of the

system at least 30 percent away from the forcing frequency.

m2k2

k2 = 5000 lb/in.
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9.68* A hollow steel shaft of outer diameter 2 in., inner diameter 1.5 in., and length 30 in. carries

a solid disc of diameter 15 in. and weight 100 lb. Another hollow steel shaft of length 20 in.,

carrying a solid disc of diameter 6 in. and weight 20 lb, is attached to the first disc, as shown

in Fig. 9.51. Find the inner and outer diameters of the shaft such that the attached shaft-disc

system acts as an absorber.

30 *

1.5 * 2 * J1 J2

20 *

FIGURE 9.51

1 m 0.5 m

FIGURE 9.52

9.69* A rotor, having a mass moment of inertia is mounted at the end of a steel

shaft having a torsional stiffness of 0.6 MN-m/rad. The rotor is found to vibrate violently

when subjected to a harmonic torque of 300 cos 200t N-m. A tuned absorber, consisting of a

torsional spring and a mass moment of inertia ( and ), is to be attached to the first rotor

to absorb the vibrations. Find the values of and such that the natural frequencies of the

system are away from the forcing frequency by at least 20 percent.

9.70 Plot the graphs of against and against as 

varies from 0 to 1.0 when and 10.0.

9.71 Determine the operating range of the frequency ratio for an undamped vibration

absorber to limit the value of to 0.5. Assume that and 

9.72 When an undamped vibration absorber, having a mass 30 kg and a stiffness k, is added to a

spring-mass system, of mass 40 kg and stiffness 0.1 MN/m, the main mass (40 kg mass) is

found to have zero amplitude during its steady-state operation under a harmonic force of

amplitude 300 N. Determine the steady-state amplitude of the absorber mass.

9.73 An electric motor, of mass 20 kg and operating speed 1350 rpm, is placed on a fixed-fixed

steel beam of width 15 cm and depth 12 cm, as shown in Fig. 9.52. The motor has a rotating

unbalance of 0.1 kg-m. The amplitude of vibration of the beam under steady-state operation

m2 = 0.1m1.v1 = v2X1/dst

v/v2

v2/v1 = 0.1

(m2/m1)(m2/m1)(Æ2/v2)(m2/m1)(Æ1/v2)

J2kt2

J2kt2

J1 = 15 kg-m2,
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of the motor is suppressed by attaching an undamped vibration absorber underneath the

motor, as shown in Fig. 9.52. Determine the mass and stiffness of the absorber such that the

amplitude of the absorber mass is less than 2 cm.

9.74 A bridge is found to vibrate violently when a vehicle, producing a harmonic load of magni-

tude 600 N, crosses it. By modeling the bridge as an undamped spring-mass system with a

mass 15,000 kg and a stiffness 2 MN/m, design a suitable tuned damped vibration absorber.

Determine the improvement achieved in the amplitude of the bridge with the absorber.

9.75 A small motor, weighing 100 lb, is found to have a natural frequency of 100 rad/s. It is pro-

posed that an undamped vibration absorber weighing 10 lb be used to suppress the vibra-

tions when the motor operates at 80 rad/s. Determine the necessary stiffness of the absorber.

9.76 Consider the system shown in Fig. 9.53 in which a harmonic force acts on the mass m.

Derive the condition under which the steady-state displacement of mass m will be zero.

K1 K2

k
c

R

Disc, mass M

Rolls without slipping

Cord

m

F0 sin vt

x(t)

FIGURE 9.53

Section 9.12 MATLAB Problems

9.77 Using MATLAB, plot Eq. (9.94) for and 1 over the range 

9.78 Using MATLAB, plot Eqs. (9.140) and (9.141) for and 0.4, and

and 0.5 over the range 

9.79 Using MATLAB, plot the ratios and given by Eq. (9.146) for 

3.0, and 4.5 and to 1.

9.80 Using Program 13.m, solve Problem 9.13.

9.81 Write a computer program to find the displacement of the main mass and the auxiliary

mass of a damped dynamic vibration absorber. Use this program to generate the results of

Fig. 9.38.

m2/m1 = 0

v2/v1 = 1.5,Æ2/v
2

Æ1/v2

0.6 v/v1.m = 0.2

f = 1, z = 0.2, 0.3,

0 r 3.z = 0, 0.25, 0.5, 0.75,
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9.82 Ground vibrations from a crane operation, a forging press, and an air compressor are trans-

mitted to a nearby milling machine and are found to be detrimental to achieving specified

accuracies during precision milling operations. The ground vibrations at the locations of the

crane, forging press, and air compressor are given by 

and respectively, where 

and The ground vibrations

travel at the shear wave velocity of the soil, which is equal to 980 ft/sec, and the amplitudes

attenuate according to the relation where is the amplitude at the source

and is the amplitude at a distance of r ft from the source. The crane, forging press, and air

compressor are located at a distance of 60 ft, 80 ft, and 40 ft, respectively, from the milling

machine. The equivalent mass, stiffness, and damping ratio of the machine tool head in ver-

tical vibration (at the location of the cutter) are experimentally determined to be 500 kg,

480 kN/m, and 0.15, respectively. The equivalent mass of the machine tool base is 1000 kg.

It is proposed that an isolator for the machine tool be used, as shown in Fig. 9.54, to improve

the cutting accuracies [9.2]. Design a suitable vibration isolator, consisting of a mass, spring,

and damper, as shown in Fig. 9.54(b), for the milling machine such that the maximum verti-

cal displacement of the milling cutter, relative to the horizontal surface being machined, due

to ground vibration from all the three sources does not exceed peak-to-peak.5 mm

Ar

A0Ar = A0e-0.005r,

zc = 0.1.va = 20 Hz,vf = 15 Hz,vc = 10 Hz,Aa = 25 mm,

Af = 30 mm,Ac = 20 mm,xa(t) = Aa sin vat,sin vft,

xf(t) = Afsin vct,xc(t) = Ace
-vczct

meq

mb * mi

keq ceq

ki ci

xcutter

xbase

xground

(a)

(b)

ki/2 ki/2ci
Isolator

Machine tool head (meq) 

Milling cutter

Horizontal surface
being machined

Machine tool base (mb)

Isolator (mass, mi)

FIGURE 9.54
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