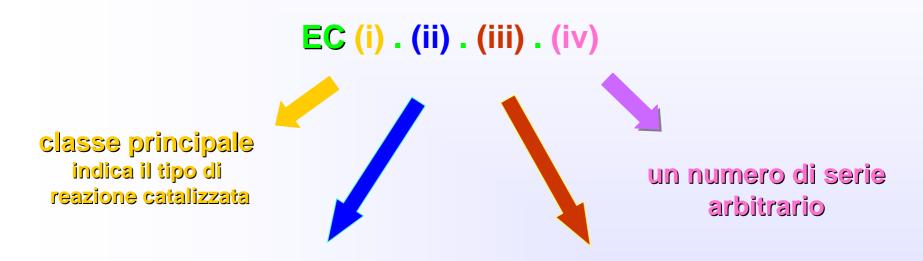
CLASSIFICAZIONE ENZIMI


nome raccomandato

nome sistematico

reazione catalizzata

Classe di enzima	Reazione catalizzata
1. Ossidoreduttasi	Ossido-riduzione
2. Transferasi	Trasferimento di gruppi funzionali
3. Idrolasi	Idrolisi
4. Liasi	Eliminazione di gruppi (formazione di doppi legami)
5. Isomerasi	Isomerizzazione
6. Ligasi	Formazione di legame accoppiata con rottura di un
	trifosfato

Enzyme Commission (EC) ha assegnato ad ogni enzima una serie di 4 numeri che hanno il seguente significato

sottoclasse

indica il tipo di substrato, il tipo di gruppo funzionale trasferito, o la natura di uno specifico legame coinvolto nella reazione sotto-sottoclasse
esprime la natura del substrato
e del cosubstrato

ESEMPIO

nome sistematico N-acil-L-amminoacido amminoidrolasi

EC 1 Ossidoreduttasi

catalizzano le reazioni di ossidoriduzione

tutti questi enzimi agiscono sul substrato trasferendo elettroni

nella maggior parte dei casi il substrato che viene ossidato è visto come donatore di idrogeno

vari cofattori o cosubstrati agiscono come molecole accettori

il nome sistematico è basato sul donatore:accettore ossidoreduttasi

dove sia possibile si usa il termine deidrogenasi altrimenti si usa il termine reduttasi

se l'accettore è l'ossigeno molecolare O₂, l'enzima si può chiamare ossidasi

EC 1.1 Agisce sui donatori CH-OH

Le sotto-sottoclassi sono definite dai tipi di cofattori

R¹ = hydrogen, organic residue

 R^2 = hydrogen, organic residue, alcoxy residue

EC 1.2 Agisce sui donatori aldeidici e carbossilici

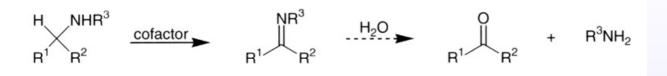
Le sotto-sottoclassi sono definite dai tipi di cofattori

R = hydrogen, organic residue

EC 1.3 Agisce sui donatori CH-CH

$$R^1$$
 R^2 R^3 R^4 R^4 R^3 R^4

R^{1,2,3,4} = hydrogen, organic residue

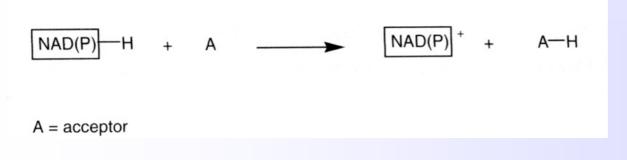

Le sotto-sottoclassi sono definite dai tipi di cofattori

EC 1.4 Agisce sui donatori CH-NH₂

R^{1,2} = hydrogen, organic residue

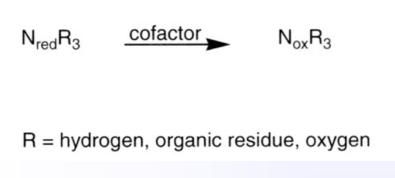
Le sotto-sottoclassi sono definite dai tipi di cofattori

EC 1.5 Agisce sui donatori CH-NH



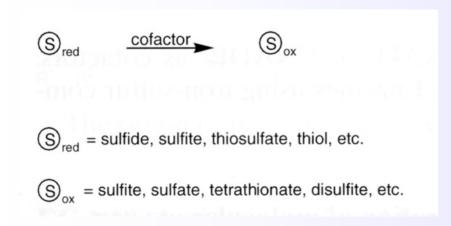
Le sotto-sottoclassi sono definite dai tipi di cofattori

R^{1,2} = hydrogen, organic residue


R³ = organic residue

EC 1.6 Agisce su NAD(P)H

Le sotto-sottoclassi sono definite dai tipi di cofattori


EC 1.7 Agisce su altri composti azotati come donatori

Gli enzimi che catalizzano
l'ossidazione di ammoniaca a nitrito e
del nitrito a nitrato appartengono a
questa sottoclasse

Le sotto-sottoclassi sono definite dai tipi di cofattori

EC 1.8 Agisce sullo zolfo dei donatori

EC 1.9 Agisce sul gruppo eme dei donatori

EC 1.10 Agisce su difenoli e sostanze correlate come donatori

OH
$$cofactor$$
 $cofactor$ $cofact$

Le sotto-sottoclassi sono definite dai tipi di cofattori

EC 1.11 Agisce su perossido come accettore

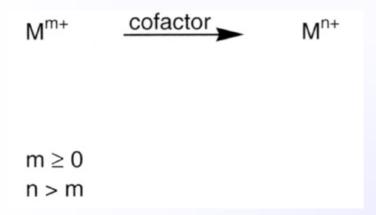
$$H_2O_2$$
 + D_{red} \longrightarrow H_2O + D_{ox} $D = donor$

EC 1.12 Agisce su idrogeno come donatore

$$H_2 + A^+ \longrightarrow H^+ + A - H$$

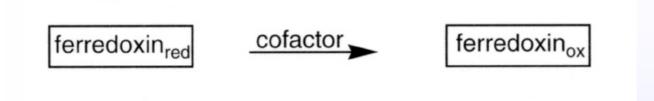
EC 1.13 Agisce su singoli donatori inserendo una molecola di O₂

$$A + O_2 \longrightarrow AO_{(2)}$$


EC 1.14 Agisce su donatori accoppiati inserendo una molecola di O₂

A +
$$O_2$$
 cofactor \rightarrow $AO_{(2)}$

EC 1.15 Agisce su un superossido radicale come accettore


$$O_2^{\bullet -}$$
 + $O_2^{\bullet -}$ + H^+ \longrightarrow $\frac{3}{2}O_2$ + H_2O

EC 1.16 Ossida ioni metallici

EC 1.17 Agisce su gruppi CH₂

EC 1.18 Agisce su ferredoxina ridotta come donatore

EC 1.19 Con azoto come accettore

N₂ cofactor NH₃

EC 2 Tranferasi

trasferiscono un gruppo chimico da un composto (generalmente visto come il donatore) ad un altro (generalmente visto come accettore)

reazione molto comune dal punto di vista biologico

la prima molecola è sempre il donatore la seconda è sempre l'accettore

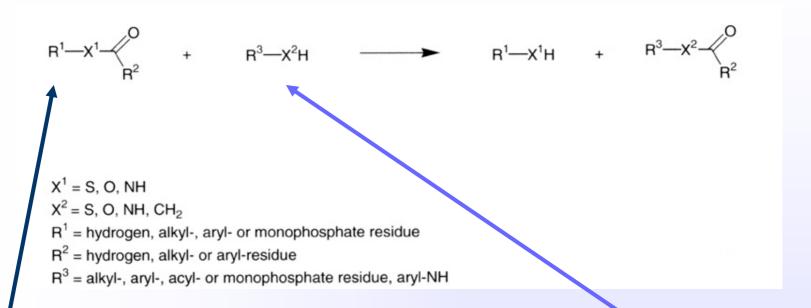
il nome sistematico di questi biocatalizzatori si forma secondo lo schema donatore:accettore gruppo transferasi

EC 2.1 Trasferisce un gruppo C1

A = acceptor

R = organic residue

© = methyl-, hydroxymethyl-, formyl-, carboxyl-, carbamoyl- and amidino-groups


EC 2.2 Trasferisce un'aldeide o un chetone

R¹ = hydrogen or methyl residue

R² = methyl residue or polyol chain

R³ = hydrogen or polyol chain

EC 2.3 Aciltrasferasi

tioesteri esteri ammidi tioalcoli alcoli ammine alcani

EC 2.4 Glicosiltrasferasi

 $X^1 = O, PO_4^{3-}$

 $X^2 = O, NH$

R¹ = hydrogen, hexosyl, pentosyl, oligosaccharide, monophosphate

 R^2 = hexosyl, pentosyl, oligosacharide, monophosphate, organic residue with OH- or NH_2 -groups

 $X^{1}R^{1}$ = nucleoside di- or monophosphates (e.g. UDP, ADP, GDP or CMP), purine

EC 2.5 Trasferisce gruppi alchilici ed arilici diversi dal metile

X—R + A — ➤ X + A—R

A = acceptor

X = OH, NH, SR, SO_4 , mono-, di- or triphosphate

R = organic residue other than a methyl group

EC 2.6 Trasferisce gruppi azotati

If $NX = NH_2$, then --- is a single bond.

If NX = NOH, then --- is a double bond.

R¹ = hydrogen, carboxy or methyl residue

 R^2 = organic residue

R³ = hydrogen, carboxy or hydroxymethyl residue

R⁴ = organic residue

Il più frequente cofattore per questi enzimi è il piridossalfosfato. Per $NX = NH_2$ i substrati sono spesso α -amminoacidi e 2-ossoacidi

EC 2.7 Trasferisce gruppi contenenti fosforo

$$R^1$$
— P + R^2 — X — R^1 + R^2 — X — P

or

 R^1 — P + R^2 — X — R^1 — X — R^2 + P

X = OH, COOH, NH₂, PO₄²⁻

R¹ = hydrogen, NDP, NMP, adenosine, monosaccharide residue, acyl residue, polyphosphate, histidine, syn-glycerol, organic residues carrying more functional groups

R² = hydrogen, monosaccharide residue, nucleosides, nucleotides, organic residues carrying more functional groups, proteins, polyphosphate

P = mono- or diphosphates

EC 2.8 Trasferisce gruppi contenenti zolfo

A = acceptor, e.g. cyanide, phenols, alcohols, carboxylic acids, amino acids, amines, saccharides

R = sulfur atom, (phosphorous-) organic residue

(S) = sulfur atom, SO₃²⁻, SH, CoA

EC 2.9 Trasferisce gruppi contenenti selenio

EC 3 Idrolasi

enzimi più importanti dal punto di vista industriale (80% degli enzimi industriali sono di questa classe)

catalizzano la rottura idrolitica dei legami C-O, C-N, C-C, P-O

usati industrialmente nella degradazione delle proteine, dei carboidrati e dei lipidi nella formulazione dei detergenti e nell'industria alimentare

potrebbero essere classificati anche come transferasi in quanto trasferiscono una molecola di acqua, ma poiché l'acqua è ubiquitaria ed importante nei processi naturali, vengono chiamati idrolasi

il nome include il nome del substrato seguito dal suffisso asi

EC 3.1 Agisce sul legame estereo

ci sono vari tipi di esteri

EC 3.1.1 Estere carbossilico idrolasi

$$R^1$$
 O R^2 H_2O $+$ R^2 OH $+$ R^2 OH

R¹ = hydrogen, organic residue

 R^2 = organic residue

EC 3.1.2 Tiolestere idrolasi

$$R^1$$
 S R^2 H_2O H_2O

R¹ = hydrogen, organic residue

 R^2 = organic residue

EC 3.1.3 Fosfoidrolasi (fosfatasi)

$$R - P$$
 H_2O $R - OH + H - P$

P = monophosphate

R = organic residue

EC 3,2 Glicosidasi

$$HO \longrightarrow VR$$
 $HO \longrightarrow VH$ $HO \longrightarrow$

X = O, N or S R = organic residue

EC 3.3 Agisce sui legami eterei

$$R^1 - X - R^2$$
 H_2O $R^1 - X - H$ + $R^2 - OH$

$$X = O \text{ or } S$$

 $R^{1,2} = \text{organic residue}$

EC 3.4 Agisce sui legami peptidici

$$R^1$$
 R^2 H_2O $H_$

R^{1,2} = part of amino acids or proteins

EC 3.5 Agisce sui legami C-N diversi dai peptidici

$$R \rightarrow NH_2$$
 $H_2O \rightarrow R \rightarrow OH$ + NH_3

R = organic residue

per alcuni nitrili si ha una reazione simile gli enzimi coinvolti si chiamano nitrilasi

$$R-C\equiv N$$
 H_2O $+$ NH_3

R = aromatic, heterocyclic and certain unsaturated aliphatic residues

EC 3.6 Agisce su anidridi di acidi

A = phosphate, organic phosphate, sulfate

R = organic residue, hydroxy group

EC 3.7 Agisce su legami C-C

$$R^1$$
 H_2O H

 $R^{1,2}$ = organic residue, hydroxy group

EC 3.8 Agisce su legami alogeno

$$R_3C-X$$
 H_2O R_3C-OH + HX

X = halogen

R = hydrogen, organic residue, hydroxy group

EC 3.9 Agisce su legami P-N

R = organic residue

EC 3.10 Agisce su legami S-N

S = sulfon group

R = organic residue

EC 3.11 Agisce su legami C-P

$$HO - P - C_n - R - H_2O - HO - P - OH + H - C_n - R$$

$$R = CH_3, OH$$

$$n = 0, 1$$

EC 3.12 Agisce su legami S-S

$$(S_1)$$
 (S_2) (S_1) (S_1) (S_2) (S_2)

$$(S_1)$$
 = sulfate

$$(S_2)$$
 = thiosulfate

EC 4 Liasi

vengono utilizzate in molti processi industriali

le reazioni catalizzate sono la rottura dei legami C-C, C-O e C-N e alcuni altri legami

rottura differente dall'idrolisi in quanto vengono lasciati doppi legami che possono dare ulteriori reazioni

nei processi industriali vengono utilizzate nella reazione inversa che è l'addizione ad un doppio legame

le reazioni vengono condotte con alte concentrazioni di substrato che porta ad alte conversioni del prodotto desiderato

la denominazione sistematica di questi enzimi segue lo schema substrato-gruppo liasi

EC 4.1 Liasi C-C

$$R^{2}$$
 R^{5} R^{5} R^{5} R^{2} R^{6} R^{7} R^{1} R^{4} R^{5} Se il substrato è un acido carbossilico, uno dei

 $R^{1,2,3,4,5}$ = hydrogen, organic residue

Se il substrato è un acido carbossilico, uno dei prodotti sarà CO₂ se il substrato è un aldeide, si può produrre CO

EC 4.2 Liasi C-O

 $R^{1,2,3,4,5}$ = hydrogen, organic residue

EC 4.3 Liasi C-N

$$R_{2}^{1}$$
 R_{3}^{4} R_{4}^{4} R_{2}^{1} R_{3}^{4} R_{4}^{2} R_{3}^{1} R_{4}^{2} R_{3}^{1} R_{4}^{2} R_{3}^{1} R_{4}^{2} R_{4}^{2} R_{5}^{1} R_{5}^{2} R_{5}^{1} R_{5}^{2} R_{5}^{1} R_{5}^{2} R_{5}^{1} R_{5}^{2} R_{5

EC 4,4 Liasi C-S

S = SH, (di)substituted sulfide, sulfur-oxide, SeHR = organic residue

EC 4.5 Liasi C-alogeno

X = halogen

R = organic residue

EC 4.6 Liasi P-O

(P) = monophosphate

R = organic residue

EC 5 Isomerasi

un numero esiguo di enzimi

uno di essi gioca un ruolo fondamentale nell'industria odierna la glucoso isomerasi (EC 5.3.1.5) che catalizza la conversione di D-glucosio in D-fruttosio è utilizzata largamente nell'industria delle bevande e dei dolcificanti naturali

catalizzano cambi geometrici e strutturali all'interno di una molecola

a seconda del tipo di isomeria si possono chiamare epimerasi, racemasi, cis-trans-isomerasi, tautomerasi o mutasi

EC 5.1 Racemasi ed epimerasi

 $X = NH_2$, NHR, NR_2 , OH, CH_3 , COOH $R^{1,2} = \text{organic residue}$

EC 5.2 cis-trans Isomerasi

X = C or N $R^{1,2,3,4} = \text{organic residue}$

EC 5.3 Ossidoreduttasi intramolecolare

$$R^1$$
— $X_{Ox.}$ — $Z_{Red.}$ — R^2 R^1 — $X_{Red.}$ — $Z_{Ox.}$ — R^2

 $R^{1,2}$ = organic residue

EC 5.3.1 interconverte aldosi e chetosi

$$R^{1,2}$$
 = hydrogen, organic residue

EC 5.3.2 Interconverte gruppi cheto-enolici

$$R^{1/2} = hydrogen$$
, organic residue

EC 5.3.3 Traspone doppi legami C-C

$$R^{1} \xrightarrow{R^{2}} R^{3}$$

$$R^{1,2,3,4,5} = \text{organic residue}$$

EC 5.3.4 Traspone legami S-S

EC 5.4. Trasferasi intramolecolare (mutasi)

le sotto-sottoclassi 1 e 2 trasferiscono un gruppo funzionale da un atomo di ossigeno ad un altro della stessa molecola

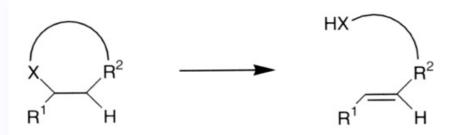
la sotto-sottoclasse 3 trasferisce un gruppo amminico da un carbonio a quello vicino della stessa molecola

EC 5.4.1 o EC 5.4.2

$$\begin{array}{c|c}
\hline{TG} \\
O & OH \\
R^1 \\
R^2
\end{array}$$

$$\begin{array}{c}
\hline{TG} \\
OH \\
R^2 \\
R^2
\end{array}$$

TG = transferred groups are acyl or orthophosphate groups


 $R^{1,2}$ = organic residue

n = 0 or 4

EC 5.4.3

$$R^{1,2} = \text{organic residue}$$

EC 5.5 Liasi intramolecolare

 $X = O, CH_2$ $R^{1,2} = organic residue$

EC 6 Ligasi

nessuna ligasi è utilizzata industrialmente

ruolo importante nell'ingegneria genetica in quanto le DNA ligasi catalizzano la formazione dei legami C-O nella sintesi del DNA

catalizzano la formazione di legami tra due molecole: i legami che formano sono C-O, C-S e C-N

il nome sistematico sarà formato X:Y ligasi

EC 6.1 Forma legami C-O

(P) = diphosphate

R = organic residue

EC 6.2 Forma legami C-S

(P) = diphosphate

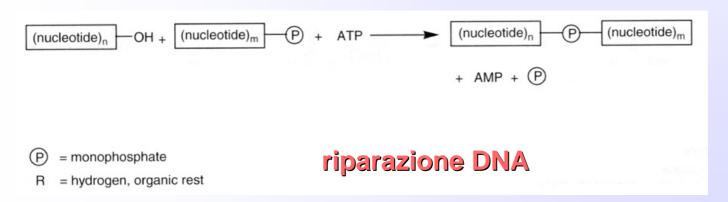
R = organic residue

NTP = nucleotide triphosphate (ATP, GTP) NMP = nucleotide monophosphate (AMP, GMP)

EC 6.3 Forma legami C-N

$$R$$
 + HNR_2 + ATP \longrightarrow R NR_2 + AMP or ADP + P

- (P) = monophosphate, diphosphate
- X = OH, H, COOH


R = hydrogen, organic residue

EC 6.3.4

(P) = diphosphate

EC 6.4 Forma legami C-C

EC 6.5 Forma legami di esteri fosforici

