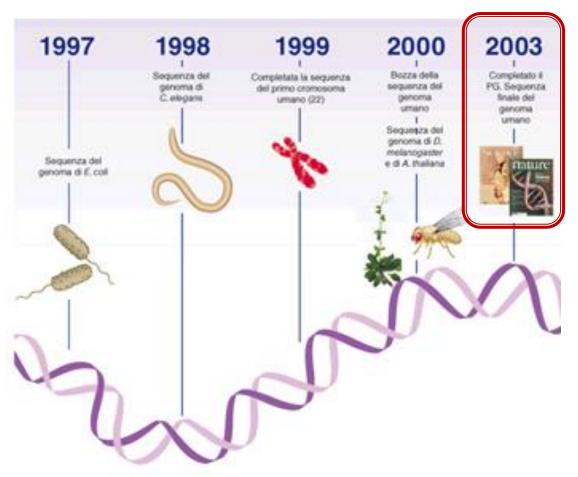

Introduzione alla Genetica medica

Pietre miliari nella genetica e nella genetica molecolare

Pietre miliari nella genetica e nella genetica molecolare



Il Progetto

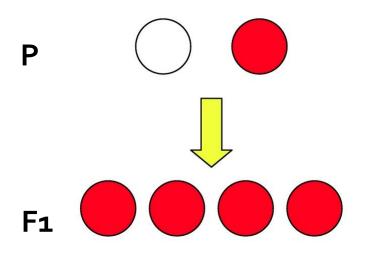
Genoma umano

Le applicazioni della genetica molecolare

Pietre miliari nel sequenziamento di genomi complessi

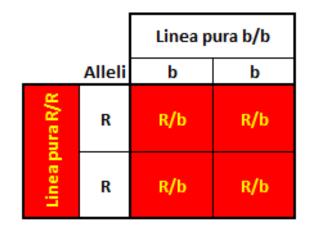
Il sequenziamento del Genoma umano completato

La nascita della genetica


GREGORY MENDEL (1822-1884)

LE LEGGI DI MENDEL

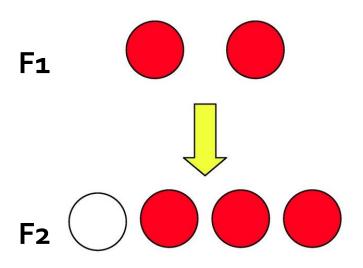
- Legge della dominanza dei caratteri
- Legge della segregazione
- 3. Legge dell'assortimento indipendente di due o più caratteri (9:3:3:1)


Prima legge di Mendel

1. Legge della dominanza

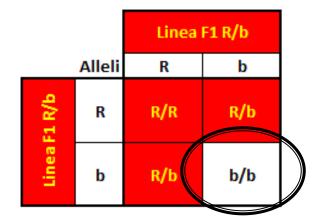
L'incrocio tra due linee pure produce discendenti tutti uguali che manifestano solo il <u>carattere o</u> <u>fenotipo dominante</u>.

L'altro carattere si definisce recessivo


DIAGRAMMA DI PUNNET

Tutti i genotipi della F1 sono <u>eterozigoti R/b</u> L'allele «*colore R*» è <u>dominante</u> sull'allele «*colore b*»

Perciò il genotipo R/b esprimerà il solo fenotipo R


NOTA: gli alleli sono trasmessi dai gameti

Seconda legge di Mendel

2. Legge della segregazione

L'incrocio degli ibridi F1 porta alla ricomparsa del carattere recessivo

Il fenotipo recessivo ricompare nella F2 a seguito della segregazione degli alleli «b», che porta alla formazione del *genotipo b/b* nel 25% della progenie F2, che perciò presenterà il *fenotipo b*.

NOTA: gli alleli sono trasmessi dai gameti

Terza legge di Mendel: assortimento indipendente di due o più caratteri

P		Linea pura xx / yy			
	Alleli	xy	xy		
a XX / YY	XY	Xx / Yy	Xx / Yy		
Linea pura	XY	Xx / Yy	Xx / Yy		

Carattere 1: alleli X dominante su X Carattere 2: alleli Y dominante su Y

Dall'incrocio di Parentali puri, ne deriva una F1 eterozigote per tutti i caratteri Il fenotipo osservato è il dominante per entrambi i caratteri

F1			Linea F1: Xx / Yy					
_		Alleli	XY	Ху	χY	xy		
		XY	XX / YY	XX / Yy	Xx / YY	Xx / Yy		
۰	Linea F1: Xx / Yy	Ху	XX / Yy	хх / уу	Xx / Yy	Хх / уу		
		χY	xX / YY	Xx / Yy	xx / YY	xx / Yy		
		ху	xX / yY	Хх / уу	хх / Үу	жх / уу		

Dall'incrocio degli eterozigoti della F1, nella F2 compaiono **genotipi con una frequenza 9:3:3:1** di cui alcuni <u>nuovi</u> (diversi dai «nonni»)

xY: 3 NUOVI genotipi

xy: 1

Leggi di Mendel: Eccezioni

Il fenotipo del
eterozigote
è intermedio e
nessuno dei caratteri
è dominante
Rosso x Bianco = Rosa

Dominanza Incompleta Alleli multipli Caratteri che presentano più dei due alleli canonici Ad esempio <u>gruppi</u> <u>sanguigni A, B, O</u>

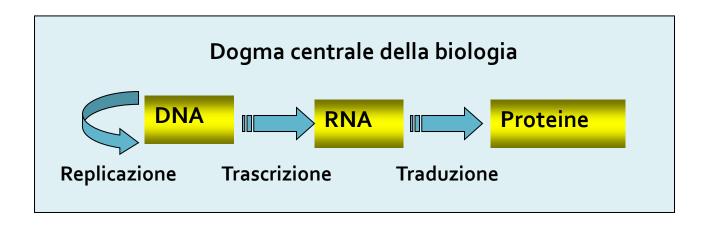
ECCEZIONI ALLE LEGGI DI MENDEL

Imprinting genomico

Quando il fenotipo è determinato non da un singolo gene, ma dalla combinazione di più geni che collaborano

Ad esempio: statura, colore occhi, colore pelle

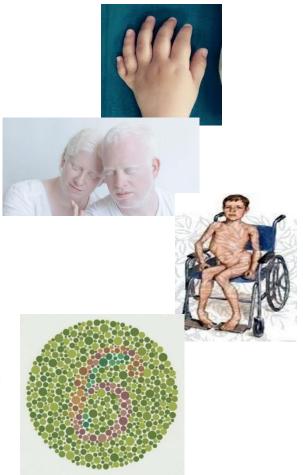
Pietre miliari della Genetica


- Nel 1944, al Rockefeller Institute di New York, Oswald Avery, Maclyn McCarty e Colin MacLeod identificarono il DNA come materiale genetico mentre lavoravano su Streptococcus pneumoniae.
- nel 1953, James Watson e Francis Crick scoprirono la struttura del DNA.
- negli anni '6o, il codice genetico fu chiarito.

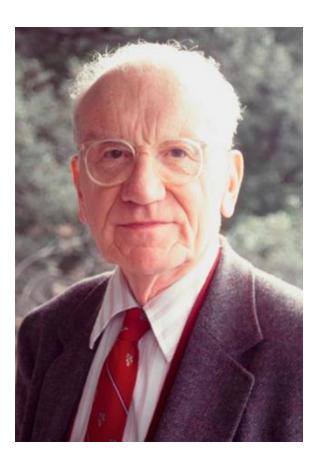
Il codice genetico

1st position	2nd position				3rd position
(5' end)	U	С	Α	G	(3' end)
U	Phe	Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	C
	Leu	Ser	STOP	STOP	A
	Leu	Ser	STOP	Trp	G
C	Leu	Pro	His	Arg	U
	Leu	Pro	His	Arg	C
	Leu	Pro	Gln	Arg	A
	Leu	Pro	Gln	Arg	G
A	lle	Thr	Asn	Ser	U
	lle	Thr	Asn	Ser	C
	lle	Thr	Lys	Arg	A
	Met	Thr	Lys	Arg	G
G	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	C
	Val	Ala	Glu	Gly	A
	Val	Ala	Glu	Gly	G

La conoscenza del codice genetico consente di comprendere come eventuali cambi nucleotidici possano determinare cambi amino acidici


Dogma centrale della biologia

La Genetica è alla base di molte delle conoscenze attuali della biologia


The archeology of Medical Genetics

- Ben prima che le conoscenze di genetica e genetica molecolare fossero note, divenne evidente l'esistenza di malattie dell'uomo dovute a trasmissione ereditaria di caratteri difettosi all'interno di specifiche famiglie
- Pierre de Maupertuis ((1698 1759), un naturalista francese, dimostrò da studi di pedigree che la presenza di extra dita (polidattilia) e la mancanza di pigmentazione (albinismo), erano caratteri ereditari
- Il medico Edward Meryon (1809-1880), nel 1851 fu il primo a riportare uno studio clinico-patologico su tre ragazzi con distrofia muscolare, scoperta attribuita in seguito a Guillaume Duchenne (1806-1875), che descrisse una serie più ampia nel 1868
- John Dalton (1766-1844), osservò che la cecità ai colori e l'emofilia erano caratteri ereditari; la cecità ai colori viene ancora oggi indicato come daltonismo

Online Mendelian Inheritance in Man (OMIM)

VICTOR MCKUSICK

- Nel 1966, circa 1500 single-gene disorders erano stati identificati
- Ciò ha portato il Dr. McKusick a scrivere il primo catalogo delle condizioni genetiche associate a singoli geni nell'uomo.
- Nel 1987, la disponibilità del World Wide Web ha portato allo sviluppo del database "Online Mendelian Inheritance in Man" (OMIM), che oggi contiene oltre 24.000 entità.

- Nel corso del 20° secolo è divenuto evidente che numerose patologie dell'uomo sono collegate a fattori genetici attraverso svariate modalità.
- Tradizionalmente, tali condizioni geneticamente determinate sono classificate come:
- Cromosomiche
- Da singolo gene
- Poligeniche
- Malattie genetiche somatiche
- Anche noi <u>seguiremo questo schema nelle lezioni</u> che seguiranno

Organizzazione del corso

ARGOMENTI GENERALI

- Genoma umano (solo supplemento a supporto)
- Polimorfismi (solo supplemento a supporto)
- Mutazioni e sistemi di riparo del DNA
- Modalità trasmissione ereditaria di malattie genetiche umane
 - Autosomica recessiva
 - Autosomica dominante
 - X-linked recessiva
 - X-linked dominante
 - Mitocondriale

ARGOMENTI SPECIFICI

- Principali malattie genetiche
 - Emoglobinopatie (Talassemie e Anemia falciforme)
 - Fibrosi cistica
 - Distrofia muscolare di Duchenne
 - Corea di Huntington
 - Sindrome del X Fragile
 - > Rene policistico
- Imprinting genomico e sindrome di Prader- Willi / Angelman
- Malattie mitocondriali
- Malattie cromosomiche
- Malattie multifattoriali
- Genetica del cancro
- Consulenza genetica
- Diagnosi prenatale e preimpianto

Organizzazione del corso

ARGOMENTI GENERALI

- Genoma umano (solo supplemento a supporto)
- Polimorfismi (solo supplemento a supporto)
- Mutazioni e sistemi di riparo del DNA
- Modalità trasmissione ereditaria di malattie genetiche umane
 - > Autosomica recessiva
 - Autosomica dominante
 - X-linked recessiva
 - X-linked dominante
 - Mitocondriale

ARGOMENTI SPECIFICI

- Principali malattie genetiche
 - Emoglobinopatie (Talassemie e Anemia falciforme)
 - Fibrosi cistica
 - > Distrofia muscolare di Duchenne
 - Corea di Huntington
 - Sindrome del X Fragile
 - > Rene policistico
- Imprinting genomico e sindrome di Prader- Willi / Angelman
- Malattie mitocondriali
- Malattie cromosomiche
- Malattie multifattoriali
- Genetica del cancro
- Consulenza genetica
- Diagnosi prenatale e preimpianto

