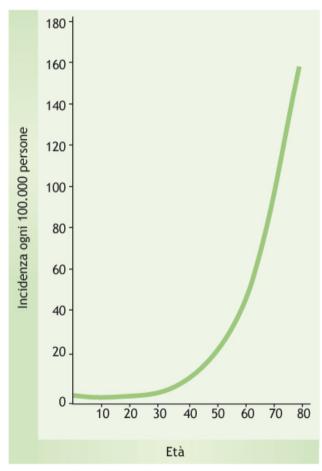
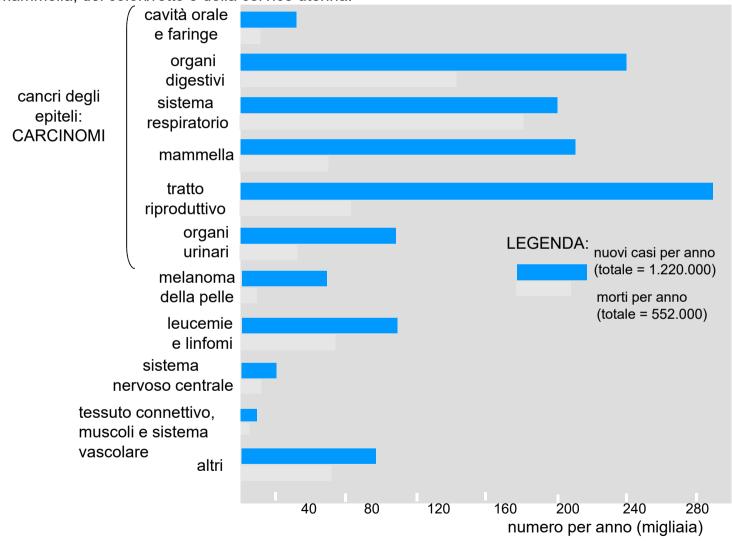
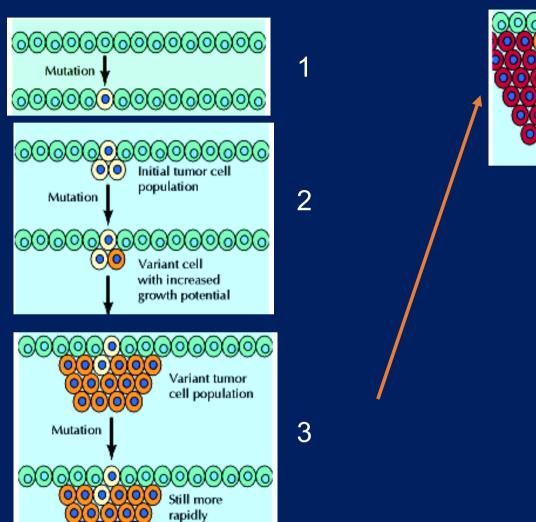
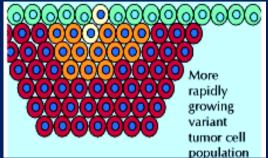
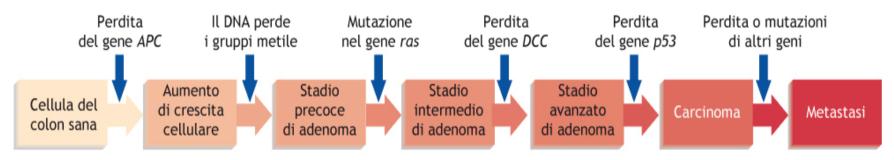
BIOLOGIA DELLA CELLULA TRASFORMATA


Figura 13.1 Incidenza annuale del cancro in funzione dell'età. Il numero di nuovi casi è espresso in rapporto al numero totale di individui per ciascun gruppo d'età.

Incidenza del cancro e mortalità negli Stati Uniti


I dati sono riferiti all'anno 2000. Si noti che soltanto la metà circa delle persone che sviluppano cancro muore per questa malattia. A livello mondiale i cinque cancri più comuni sono quelli del polmone, dello stomaco, della mammella, del colon/retto e della cervice uterina.



Stadi dello sviluppo del tumore

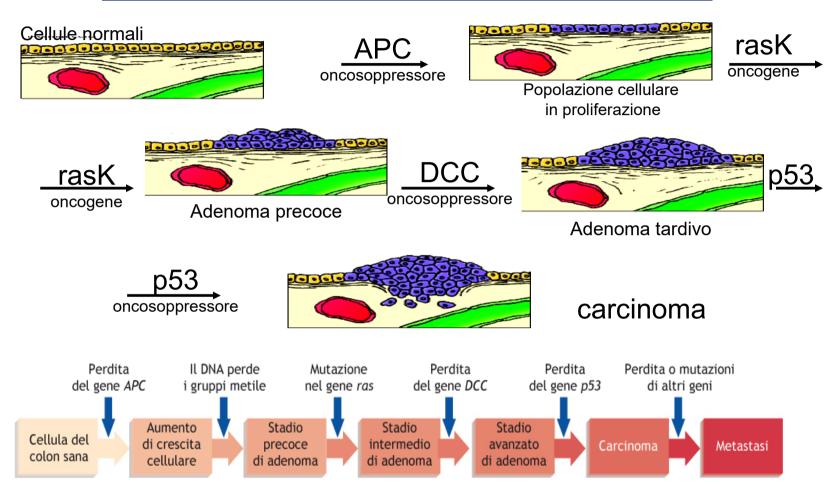

growing variant cell

Figura 13.3 Alterazioni genetiche nella progressione del carcinoma del colon. Secondo i dati sperimentali del gruppo di Vogelstein, lo sviluppo di un tumore maligno al colon segue un modello riproducibile di attivazione di oncogeni e perdita di oncosoppressori. *APC* – Gene che determina poliposi adenomatosa del colon.

Alterazioni genetiche nei carcinomi del colon

Figura 13.3 Alterazioni genetiche nella progressione del carcinoma del colon. Secondo i dati sperimentali del gruppo di Vogelstein, lo sviluppo di un tumore maligno al colon segue un modello riproducibile di attivazione di oncogeni e perdita di oncosoppressori. *APC* – Gene che determina poliposi adenomatosa del colon.

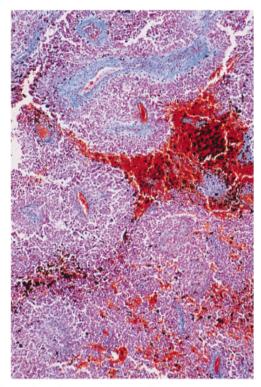
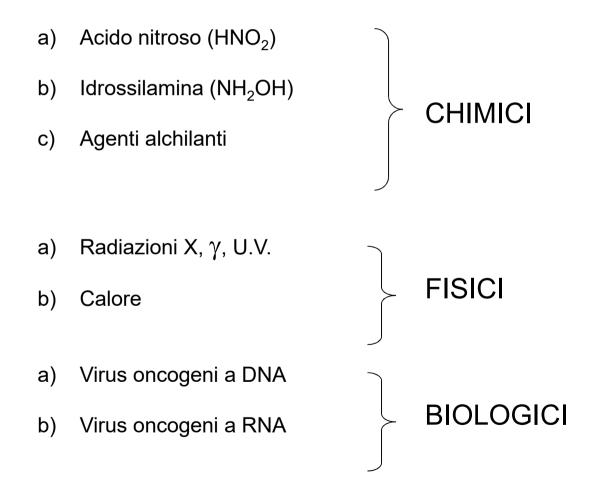


Figura 13.2 La formazione di metastasi. La micrografia mostra la metastasi epatica (in rosso) di un melanosarcoma. È evidente la capacità delle cellule tumorali di invadere ed alterare l'organizzazione del parenchima epatico.

I geni critici per il cancro

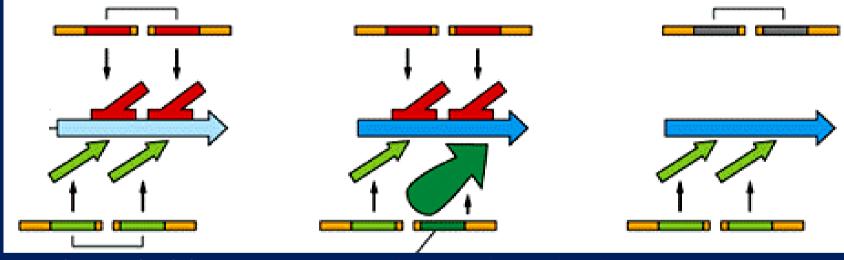

I geni critici del cancro sono raggruppati in due grandi classi, a seconda che il rischi del cancro derivi da un'attività del prodotto del gene eccessiva o ridotta. I geni della prima classe, per cui una mutazione porta la cellula ad un guadagno di funzione, sono i protooncogeni; le loro forme mutate iperattive si chiamano oncogeni. I geni della seconda classe, per cui una mutazione provoca alla cellula una perdita di funzione, sono chiamati geni oncosoppressori dei tumori.

La mutazione di una singola copia di un protooncogene può avere un effetto dominante che promuove la crescita di una cellula.

Nel caso di un gene oncosoppressore, le mutazioni devono ricadere in entrambi gli alleli per promuovere un effetto la crescita cellulare.

Mutazioni nel DNA Agenti chimici, fisici e biologici

Una serie di agenti possono indurre alterazioni permanenti nella struttura nucleotidica: tra questi vengono generalmente riportati:


CONTROLLO DEL CICLO CELLULARE I FATTORI CHE REGOLANO IL CICLO CELLULARE

GENI ONCOSOPPRESSORI E PROTOONCOGEN

PROLIFERAZIONE CELLULARE **ECCESSIVA**

due copie del gene oncosoppressore

entrambi gli alleli degli oncosoppressori sono inattivatili

due copie del protooncogene

PROLIFERAZIONE CELLULARE **NORMALE** una mutazione rende un singolo protooncogene iperattivo!!

PROLIFERAZIONE
CELLULARE ECCESSIVA

CONTROLLO DEL CICLO CELLULARE: I protooncogeni

Protooncogeni Localizzazione subcellulare Proprietà e normale funzione della proteina della proteina

Classe I: fattori di crescita/mitogeni

derivato da un gene che codifica PDGF src secreto sis

Classe II: recettori membrana

membr. citoplas. (transmembranale) prot. chin. tir.-spec./recettore dell'EGF erbB membr. citoplas. (transmembranale) prot. chin. tir.-spec./recettore di CFS-1 fms membr. citoplas. (transmembranale) ros

Classe III: proteina chinasi

membrana citoplasmatica yes

fgr

membrana citoplasmatica abl

fps (fes) citoplasma

membrana citoplasmatica kit

citoplasma mos

raf (mil)

membrana citoplasmatica H-ras K-ras membrana citoplasmatica

Classe IV: proteina chinasi

Bcl-2 membrana mitocondrio

Classe V: proteina chinasi

Cicline es: D

Classe VI: proteine nucleari/ fattori specifici della trascrizione

myb nucleo myc nucleo fos nucleo ski nucleo

proteina chinasi tirosina-specifica

proteina chinasi tirosina-specifica proteina chinasi tirosina-specifica proteina chinasi tirosina-specifica proteina chinasi tirosina-specifica

proteina chinasi serina/treonina proteina chinasi serina/treonina

prot. lega nucleot. G con attività GTPasica prot. lega nucleot. G con attività GTPasica

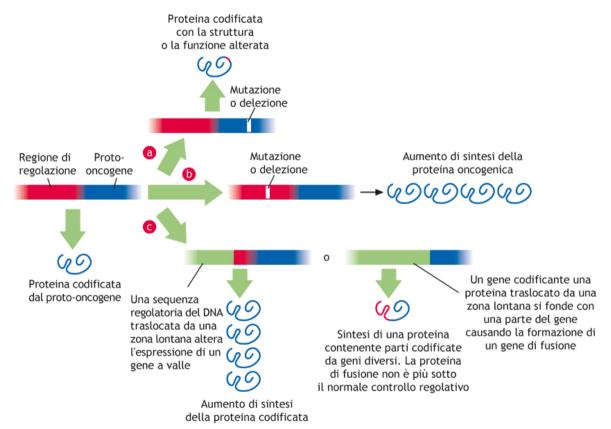
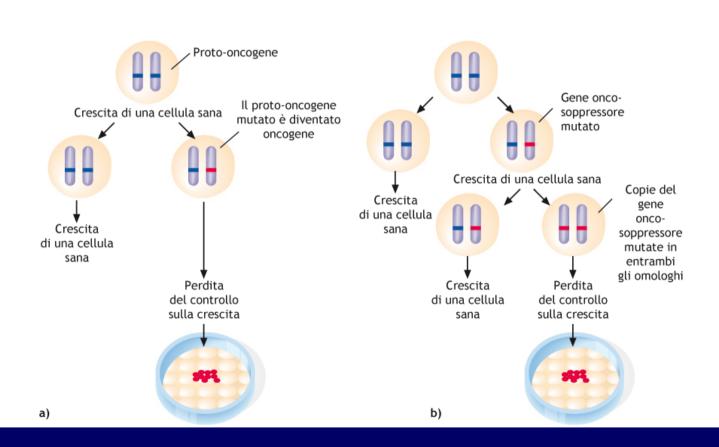
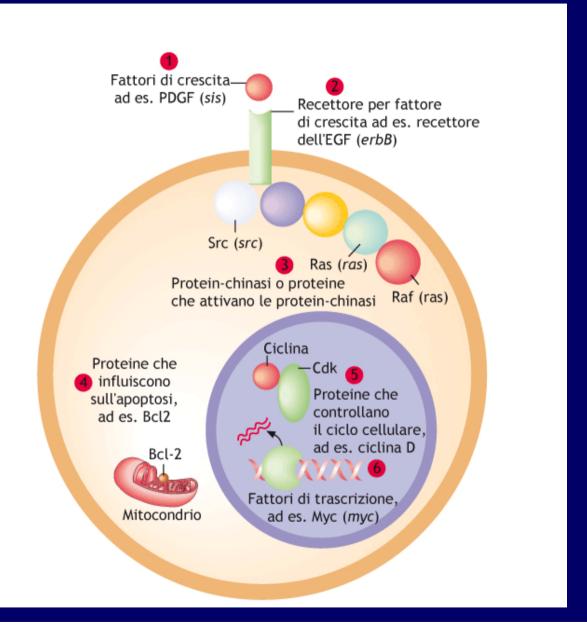




Figura 13.6 Meccanismi di attivazione di un proto-oncogene in un oncogene. Le modalità con cui un proto-oncogene può diventare un oncogene sono illustrate schematicamente in figura. Nella via (a), una mutazione missenso determina un cambiamento nella struttura e funzione della proteina codificata. In (b), una mutazione in una delle sequenze di regolazione dell'espressione genica causa una alterazione dei livelli della proteina oncogenica. Infine, in (c) un riarrangiamento genico porta alla formazione di geni di fusione la cui espressione è deregolata o che codificano proteine a funzione alterata.

Figura 13.4 Modalità di azione degli oncogeni ed oncosoppressori. (a) Un unico evento mutazionale in una delle due copie alleliche di un oncogene è sufficiente affinché la cellula acquisti un fenotipo tumorale. (b) Nel caso di un oncosoppressore, entrambe le copie dei geni sui due cromosomi omologhi devono essere alterate per indurre la cellula ad acquisire proprietà tumorigeniche.

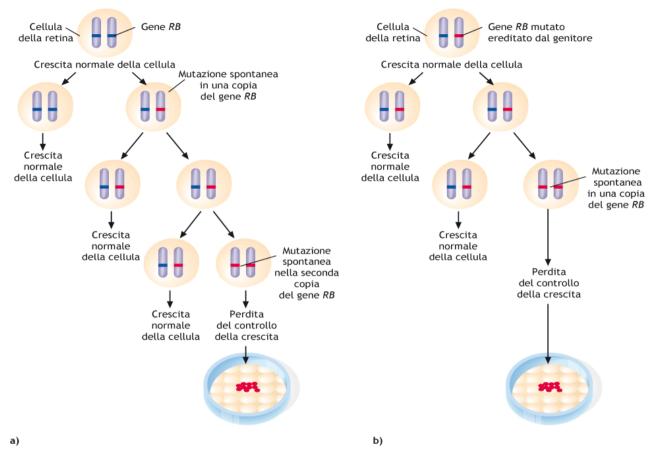
Figura 13.7 Oncogeni e localizzazione cellulare dei loro prodotti. Le proteine codificate dagli oncogeni possono essere dei fattori di crescita (1), recettori per i fattori di crescita (2), molecole citoplasmatiche per la trasduzione del segnale (3), componenti del processo apoptotico (4), proteine nucleari che regolano il ciclo cellulare (5) e fattori di trascrizione (6).

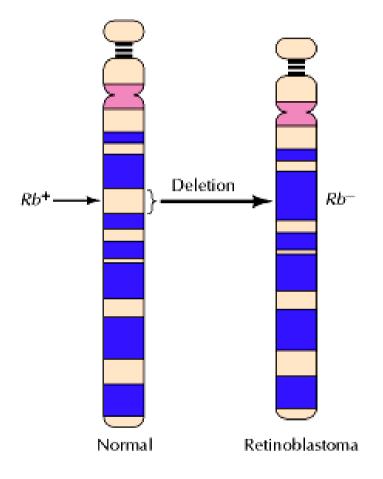
Controllo del ciclo cellulare: Geni Oncosoppressori

Gene	Tumori ereditari associati	Tumori con mutazioni somatiche	Presunta funzione della proteina
RB1	retinoblastoma famigliare	retinoblastoma, osteosarcoma, tumori mammella, prostata ecc.	regolatore trascrizionale; lega E2F
TP53	sindrome di li-Fraumeni	circa 50% in quasi tutti i tumori	fattore di trascrizione; regola ciclo cellulare e apoptosi
INK4a p16	melanoma famigliare,	25-30% in diversi tipi di t.	inibitore di chinasi
~40ARF	carcinoma pancreatico fam.	(mammella, polmone, pancreas)	• • • • • • • • • • • • • • • • • • • •
p19 ^{ARF} APC	? Melanoma famigliare? poliposi adenomatosa fam.	15% in molti tipi di tumore tumori colorettali	regola stabilità di mdm2 e p53 regola livelli della β-
AFO	poliposi adellorliatosa laili.	tumon colorettan	catenina nel citosol;
			lega i microtubuli
BRCA1	tumori ereditari della	ovaie (circa 10%) rari nella	riparo del DNA;
	mammella e ovaie	mammella	complessa Rad51 e BRCA2; regolatore trascrizionale
BRCA2	t. ereditari della mammella (sia maschi che femmine),	rare mutazioni pancreatiche	riparo DNA; complessa Rad51 e BRCA1
	tumori pancreatici		
WT-1	sindrome di Denys-Drash	tumori di Wilms	fattore di trascrizione
NF-1	neurofibromatosi tipo 1	melanoma, neuroblastoma	p21ras-GTPasi
NF-2	neurofibromatosi tipo 2 ependimoma	Schwannoma, meningioma,	legame tra membrana citopl. e citoscheletro
MEN-1	neoplasie endocrine	adenoma paratiroide, adenoma	non conosciuta
	multiple tipo 1		pituitario, tumori endocrini del
	ain dua na a di Cassadana	aliansi magnamalla musatata	pancreas
PTEN/MMAC1	sindrome di Cowden;	gliomi, mammella, prostata sporadici carcinomi papillari tiroide, t. squamosi testa-collo	fosfoinositolo 3-fosfatasi, proteina tirosin fosfatasi

Gene	Tumore primario	Funzione proposta	Patologia ereditaria	
APC	Colorettale	Si lega alla eta -catenina agendo come fattore di trascrizione	Poliposi adenomatosa familiare	
BRCAI	Mammella	Fattore di trascrizione, riparazione del DNA	Tumore familiare della mammella	
MSH2, MLH1	Colorettale	Riparazione degli appaiamenti scorretti	HNPCC	
E-Caderina	Mammella, colon, ecc.	Molecola di adesione cellulare	Cancro familiare dello stomaco	
INK4a	Melanoma, pancreas	p I 6: inibitore di Cdk p I 4 ^{ARF} : stabilizza p53	Melanoma familiare	
NFI	Neurofibromi	Attiva la GTPasi di Ras	Neurofibromatosi di tipo I	
NF2	Meningiomi	Lega la membrana al citoscheletro	Neurofibromatosi di tipo 2	
p16 (MTSI)	Melanoma	Inibitore di Cdk	Melanoma familiare	
p53	Sarcomi, linfomi, ecc.	Fattore di trascrizione (ciclo cellulare ed apoptosi)	Sindrome di Li-Fraumeni	
PTEN	Mammella, tiroide	PIP ₃ fosfatasi	Malattia di Cowden	
RB	Tumore della retina	Lega E2F (regolazione trascrizionale del ciclo cellulare)	Retinoblastoma	
VHL	Carcinoma del rene	Regola l'allungamento dell'RNA pol II	Sindrome di von Hippel-Lindau	
WTI	Tumore di Wilms del rene	Fattore di trascrizione	Tumore di Wilms	

Tabella 13.1 Geni oncosoppressori.



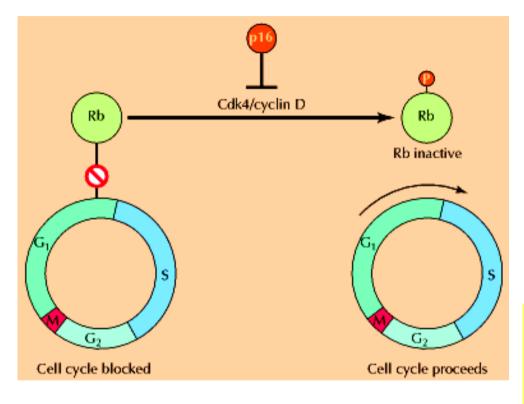

Figura 13.8 Mutazioni dell'oncosoppressore RB durante lo sviluppo del retinoblastoma. (a) Nel retinoblastoma sporadico, il tumore si sviluppa quando una cellula della retina accumula mutazioni indipendenti in entrambi gli alleli del gene. (b). Nei casi familiari (retinoblastoma ereditario), una copia mutata del gene viene ereditata dal genitore affetto. L'individuo quindi presenta in tutte le sue cellule un allele RB mutato. Se l'altro allele RB viene inattivato, in una cellula retinica, da una seconda mutazione somatica, questa cellula andrà incontro a trasformazione neoplastica, originando una massa tumorale.

EREDITARIO NON EREDITARIO First mutation already present in germ line First mutation somatic Second mutation somatic Second mutation somatic Tumor development Tumor development

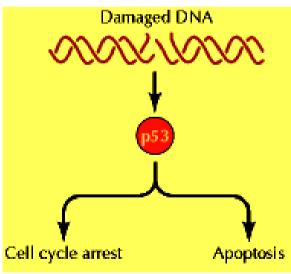
Geni oncosoppressori pRb

Lo sviluppo del retinoblastoma richiede due mutazioni che portano alla perdita di entrambe le copie funzionanti del gene.

Geni oncosoppressori: Rb

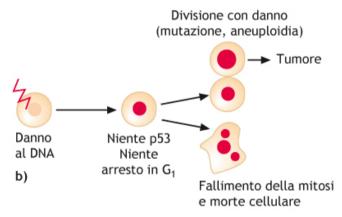


Delezioni di Rb nel retinoblastoma.


Molti retinoblastomi hanno delezioni del locus cromosomico (13q14) che contiene il gene Rb.

Il gene Rb è inattivato in molti carcinomi della vescica, della mammella e del polmone.


Funzione dei prodotti dei geni oncosoppressori: Rb e p53



pRb

p53

Figura 13.9 Azione dell'oncosoppressore p53. (a) L'aumento dei livelli della p53 in seguito al danno al DNA induce il processo apoptotico portando la cellula alla morte o attiva i sistemi di riparazione del materiale genetico. **(b)** Nelle cellule dove la p53 è mutata, i danni al DNA determinano o la morte cellulare o la espansione neoplastica di cloni cellulari con mutazioni puntiformi o con un assetto cromosomico alterato.

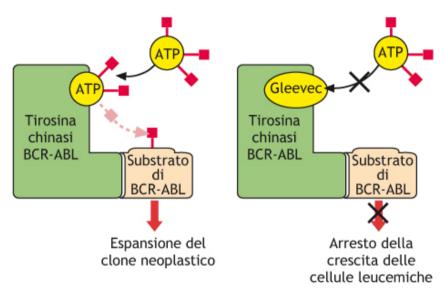
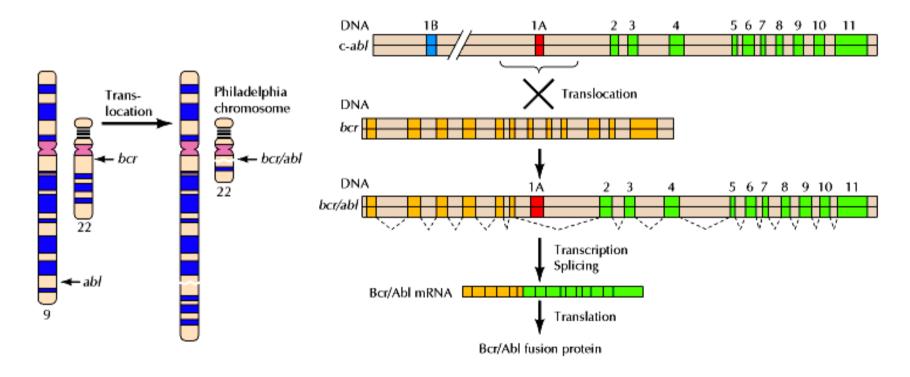



Figura 13.10 Modalità di azione del Gleevec. La proteina tirosina chinasi BCR-ABL è costitutivamente attiva nelle cellule di leucemia mieloide cronica e rappresenta l'evento molecolare patogenetico per questa neoplasia. Il Gleevec, legandosi alla tasca enzimatica dell'ATP, blocca la capacità di BCR-ABL di fosforilare i suoi substrati e determina l'arresto della crescita delle cellule leucemiche.

Oncogeni nel cancro umano

Traslocazioni di altri protooncogeni portano spesso a riarrangiamenti di sequenze codificanti, e alla formazione di prodotti genici anormali. Il prototipo è la traslocazione del protooncogene *abl* dal cromosoma 9 al cromosoma 22 nella leucemia mieloide cronica. La traslocazione porta alla fusione del gene abl (Abelson) con il suo partner di traslocazione, un gene chiamato bcr (braekpoint cluster region), sul cromosoma 22. Il risultato è la produzione di una proteina di fusione Bcr/Abl in cui il terminale amminico della proteina Abl è sostituito da sequenze aminoacidiche Bcr. La fusione delle sequenze Bcr porta all'attività anomala e alla alterata localizzazione subcellulare della proteina-tirosina chinasi Abl e alla trasformazione della cellula.

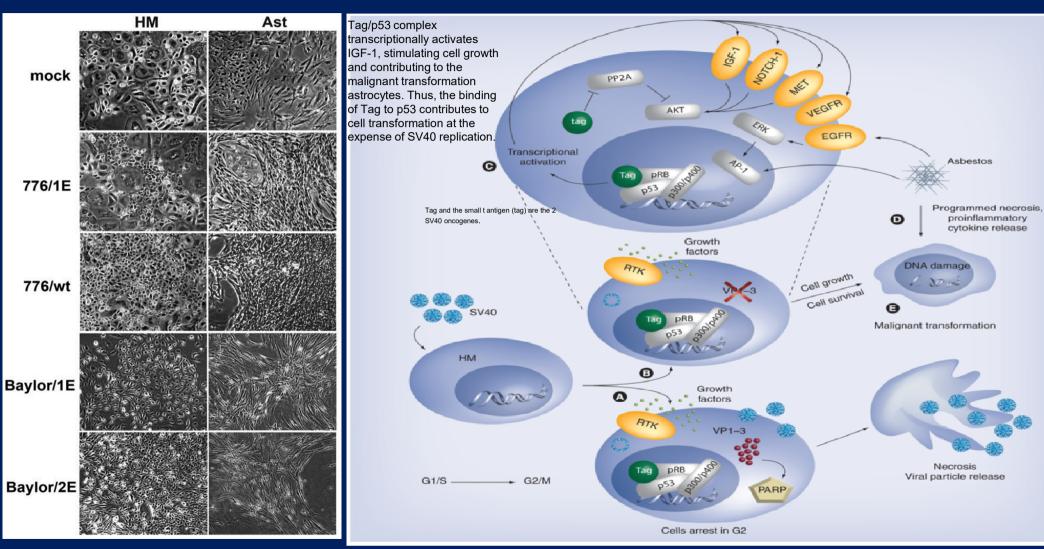

MiRNA	Locus genico	Istotipo tumorale associato	Funzione	Bersaglio
miR-15a miR-16-1	Cromosoma 13q14	Frequentemente deleto o down-regolato nella leucemia lin- focitica cronica delle cellule B	Oncosoppressore	Bcl-2
miR-21	Cromosoma 17q23.2	Over-espresso nei glioblastomi e nel cancro alla mammella	Oncogene	SerpinB5 PDCD4 PTEN TIMP3
miR-143 miR-145	Cromosoma 5q32-33	Più bassa espressione in carcinomi colon-rettali, down-rego- lato in linee tumorali di prostata, mammella, cervice	Oncosoppressore	
Componenti della famiglia let-7	Loci multipli	Regola negativamente l'oncogene ras; frequentemente down- regolato in carcinomi polmonari	Oncosoppressore	RAS
miR-142	Cromosoma 17q22	Forme molto aggressive di leucemia delle cellule B	Oncogene	MYC
miR-29c	Cromosoma 1q32.2	Down-regolato nei carcinomi nasofaringei	Oncosoppressore	Collagen Laminina
miR-122	Cromosoma 18q21.31	Carcinomi epatocellulari	Oncosoppressore	Ciclina G1
miR-155	Cromosoma 21q21	Over-espresso in numerosi tumori solidi, leucemie e linfomi	Oncogene	RHOA

Tabella I.13.1.1 MicroRNA associati al cancro nell'uomo.

Virus tumorali

Famiglia del virus	Tumori umani	Dimensioni genoma (Kb)
Virus tumorali a DNA		
Virus dell'epatite B	Cancro del fegato	3
Poliomavirus (MCV) SV40	MCC(Carcinoma a cellule nel modello animale (OS,	,
Papillomavirus	Carcinoma cervicale	8
Adenovirus	Nessuno	35
Herpesvirus	Linfoma di Burkitt, carcinoma nasofaringeo	100-200
Virus tumorali ad RNA		
Retrovirus	Leucemia T dell'adulto	9

☐ SV40 transforms many types of cells in culture, including those of human origin

☐ SV40 transforms lymphocyte T

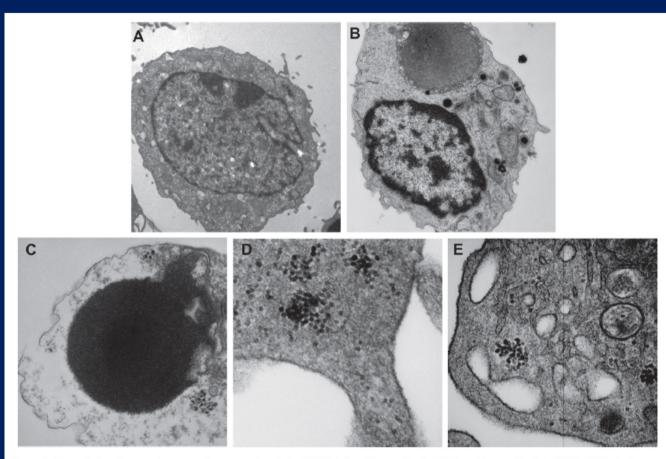


Figure 3. Transmission electron microscopy ultrastructural analysis of SV40-infected human T cell. (A) Normal human T cell (\times 6,300). (B) Typical aspects of a T-cell infected with SV40 virions after 10 days. The cell showed typical hairy cytoplasmic projections (hair) and "ribosome lamella" structures; similarities with hairy cells, characterizing hairy cell leukemia (HCL-T) (\times 13,000). (C) T cell infected with SV40 at day 10 PI. Cell exhibits large sizing (about 14–20 μ m), with a voluminous and indented nucleus, with slacker chromatin and clear cytoplasm; typical aspects of T cells characterizing prolymphocytic leukemia-type T (\times 15,000). (D) Details of a filamentous projection of the cytoplasm (a typical structure in hairy cells) (\times 40,000). (E) The cytoplasm was found to contain many organelles, multivesicular bodies, "ribosome-lamella" structures, typical of hairy cells (HCL-T) (\times 80,000).

☐ SV40 transforms lymphocyte B

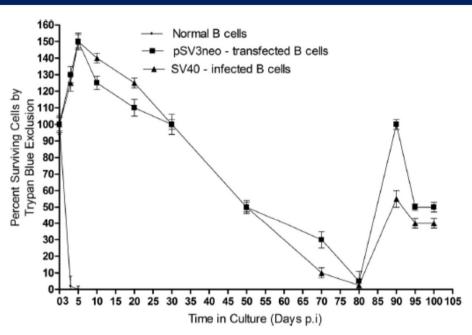


Fig. 1. Cell viability of normal (♠) SV40 transfected (■) and SV40 infected human B lymphocytes (♠), was evaluated with trypan blue exclusion analysis. In our culture conditions, the majority of normal B cells remained viable for up to 5 days, while SV40 transfected and infected, B lymphocytes, were viable for up to 100 post infection (p.i.). SV40-infected and pSV3neo-transfected B cells showed an increase up to 150% of vitality at day 5 Pl. From 5 days Pl, until day 80 Pl, there was a gradual decrease in SV40-infected and pSV3neo-transfected B cells number, SV40-infected and pSV3neo-transfected B cells number, until day 90 p.i. At day 90 of culture, the cell number decline from 55% and 100% to 40% and 50%, in SV40 infected and transfected B cells cultures respectively, at 95 day Pl. This vitality remains constant up to 100 day Pl, days at the end of experiment. The error bars represent averages of results of B-cell cultures obtained from six donors.

☐ SV40 transforms lymphocyte B

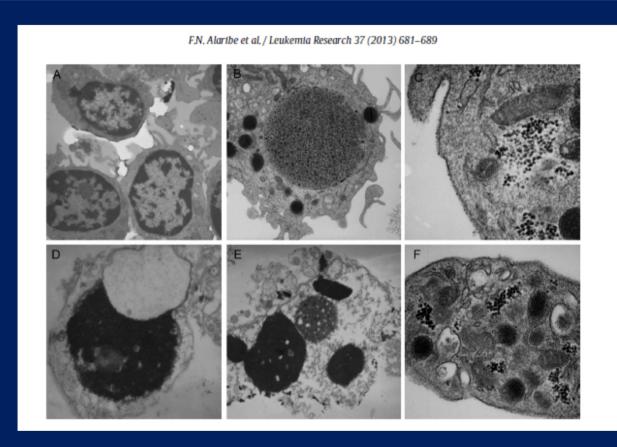
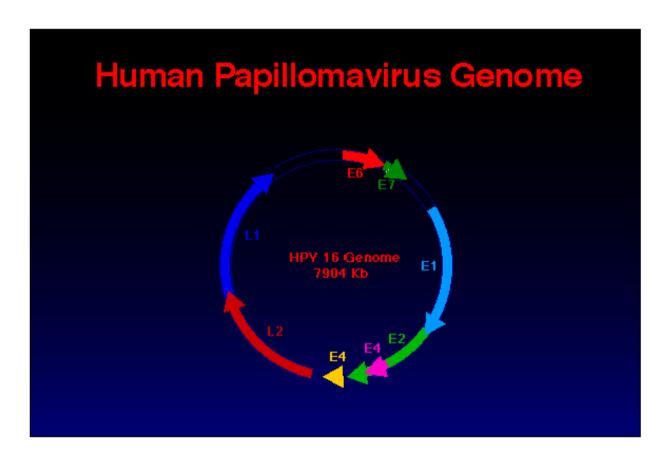
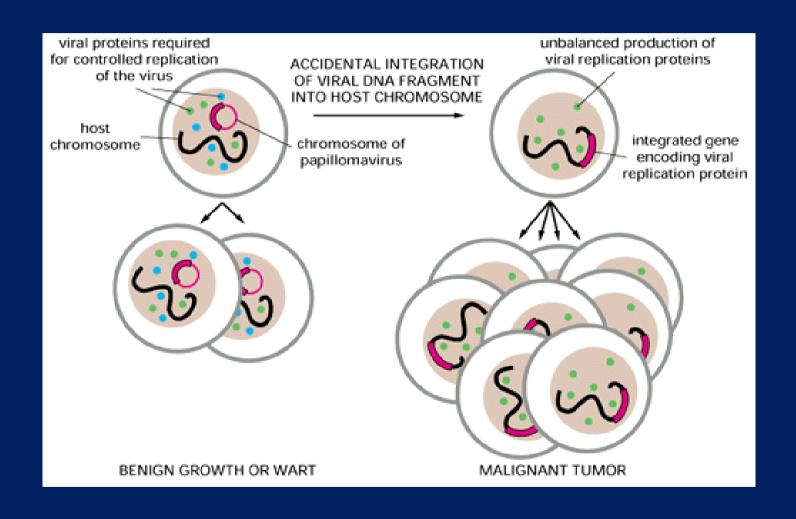
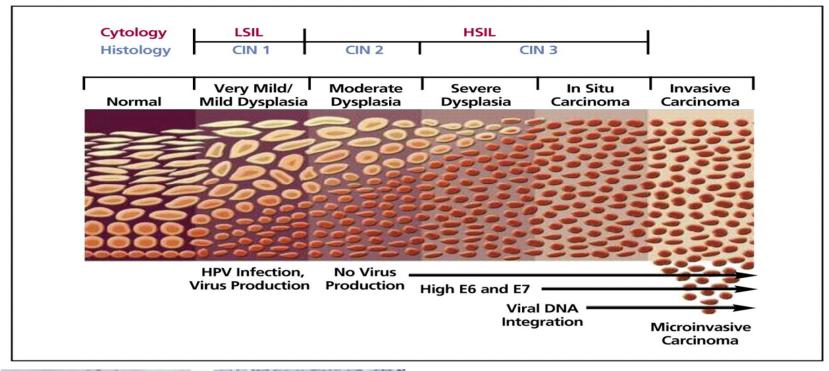
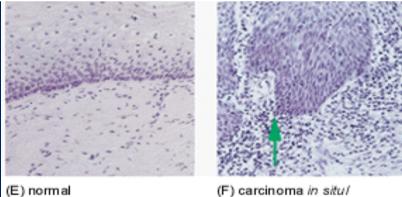



Fig. 3. Transmission electron microscopy ultrastructural analysis of SV40-infected/transfected human B cell. (A) Normal human B cell (\times 7000). (B) Typical aspects of a B-cell infected with SV40 virions after 6 days. The cell showed typical hairy cytoplasmic projections (hair) similarities with hairy cells, characterizing hairy cell leukemia (HCL-B) (\times 15,000). (C) Details of a filamentous projection of the cytoplasm (a typical structure in hairy cells) (\times 60,000). (D)–(E) B cell transfected with Psv3Neo and SV40 infected, respectively, at day 3 Pl, showed large sizing (about 14–20 mm), with a voluminous and indented nucleus, with slacker chromatin and clear cytoplasm; typical aspects of B cells characterizing prolymphocytic leukemia-type B (\times 15,000). (F) Typical aspects of a B-cell infected with SV40 virions after 3 days with inclusions (\times 50,000).

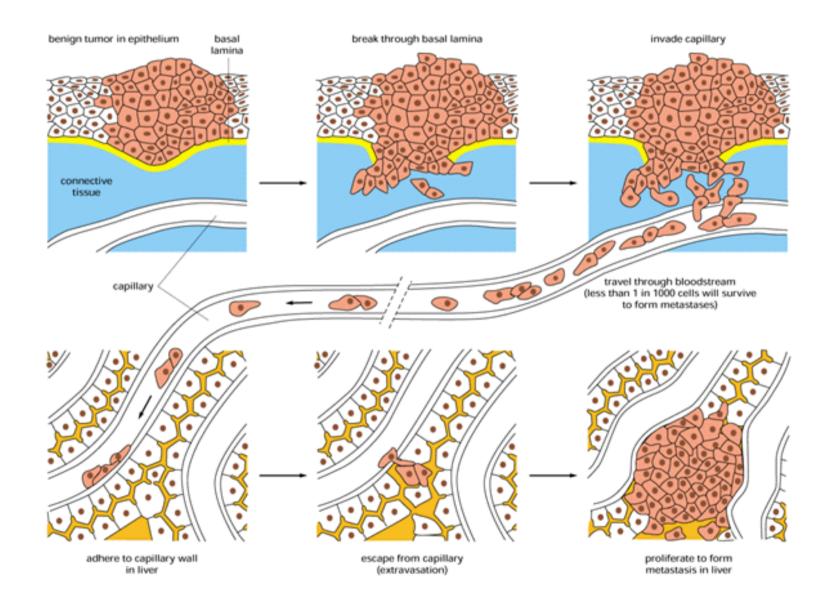

Inducono tumori benigni e maligni.


Virus tumorali a DNA



La trasformazione cellulare deriva dall'espressione di due geni della regione precoce, E6 e E7. E7 sequestra pRb mentre E6 degrada p53.

Il modo in cui si pensa che certi papillomavirus diano origine al cancro della cervice uterina



malignant carcinoma

Stadi di progressione nello sviluppo del cancro dell'epitelio della cervice uterina

Tappe del processo di metastatizzazione

Grazie per l'attenzione

