Salta ai contenuti. | Salta alla navigazione

Strumenti personali

GUIDELINES OF MATHEMATICAL METHODS OF PHYSICS

Academic year and teacher
If you can't find the course description that you're looking for in the above list, please see the following instructions >>
Versione italiana
Academic year
2015/2016
Teacher
ALESSIO NOTARI
Credits
9
Didactic period
Secondo Semestre
SSD
FIS/02

Training objectives

The course aims to introduce the students to the basic notions required to understand modern theories in physics: Complex Analisys; Vectorial Spaces; Topological, Metric and Normed Spaces; Hilbert Spaces; Fourier Transform; Distributions.

Prerequisites

Elementary linear algebra, differential and integral calculus in one and many variables.

Course programme

Complex Analisys: analitic functions, singularities in the complex plane, Cauchy theorem, theorem of residues. Algebraic structures:Vectorial Spaces; Operator on vectorial spaces; Operators algebra;Topological, Metric and Normed spaces; Hilbert spaces; L1 and L2spaces; Linear operators on Hilbert spaces; Distributions.

Didactic methods

Theoretical/practical lessons.

Learning assessment procedures

Written/oral examination.

Reference texts

Carlo Bernardini, Orlando Ragnisco, Paolo Maria Santini; Metodi Matematici della Fisica;
A.N. kolmogorov e S.V Fonin Elementi diteoria delle funzioni e di analisi funzionale MIR Mosca 1980
Onofri Teoria degli operatori lineari Ed. Zara 1984
Fano Metodi matematici della meccanica quantistica Zanichelli 1967
F. G. TRICOMI: Istituzione di Analisi Superiore (metodi matematici della fisica), Cedam, Padova, 1964.