GUIDELINES OF MATHEMATICAL METHODS OF PHYSICS
Academic year and teacher
If you can't find the course description that you're looking for in the above list,
please see the following instructions >>
- Versione italiana
- Academic year
- 2015/2016
- Teacher
- ALESSIO NOTARI
- Credits
- 9
- Didactic period
- Secondo Semestre
- SSD
- FIS/02
Training objectives
- The course aims to introduce the students to the basic notions required to understand modern theories in physics: Complex Analisys; Vectorial Spaces; Topological, Metric and Normed Spaces; Hilbert Spaces; Fourier Transform; Distributions.
Prerequisites
- Elementary linear algebra, differential and integral calculus in one and many variables.
Course programme
- Complex Analisys: analitic functions, singularities in the complex plane, Cauchy theorem, theorem of residues. Algebraic structures:Vectorial Spaces; Operator on vectorial spaces; Operators algebra;Topological, Metric and Normed spaces; Hilbert spaces; L1 and L2spaces; Linear operators on Hilbert spaces; Distributions.
Didactic methods
- Theoretical/practical lessons.
Learning assessment procedures
- Written/oral examination.
Reference texts
- Carlo Bernardini, Orlando Ragnisco, Paolo Maria Santini; Metodi Matematici della Fisica;
A.N. kolmogorov e S.V Fonin Elementi diteoria delle funzioni e di analisi funzionale MIR Mosca 1980
Onofri Teoria degli operatori lineari Ed. Zara 1984
Fano Metodi matematici della meccanica quantistica Zanichelli 1967
F. G. TRICOMI: Istituzione di Analisi Superiore (metodi matematici della fisica), Cedam, Padova, 1964.