STRUTTURA DELLA MATERIA II
Anno accademico e docente
Non hai trovato la Scheda dell'insegnamento riferita a un anno accademico precedente?
Ecco come fare >>
- English course description
- Anno accademico
- 2016/2017
- Docente
- LORIS GIOVANNINI
- Crediti formativi
- 6
- Periodo didattico
- Secondo Semestre
- SSD
- FIS/03
Obiettivi formativi
- Il corso fornisce allo studente le conoscenze di base della fisica atomica (atomi a più elettroni), delle molecole semplici (stati elettronici e roto-vibrazionali), dello stato solido e dell'interazione radiazione-materia.
Prerequisiti
- Sono raccomandate conoscenze di base di Meccanica Quantistica; inoltre il superamento dell'esame di "Struttura della Materia I" è un prerequisito per sostenere l'esame del presente corso.
Contenuti del corso
- Proprietà delle funzioni d'onda dell'atomo di idrogeno: numeri quantici, distribuzione spaziale della probabilità (2 ore).
Esperimento di Stern-Gerlach; lo spin dell'elettrone; accoppiamento LS; effetti relativistici, regola dell'intervallo di Landè (2 ore).
Effetto Lamb, struttura iperfine; emissione spontanea; regole di selezione in forte campo magnetico; operatore inversione, regole di selezione in approssimazione di dipolo elettrico; emissione spontanea e stimolata, confronto con corpo nero (modello di Einstein) (6 ore).
Atomi a più elettroni; sistemi di fermioni, simmetria delle funzioni d'onda, ortoelio e paraelio; modello di Hartree (4 ore). Potenziale di ionizzazione; spettro di emissione raggi X, legge di Moseley; effetto Auger (2 ore). Elementi alcalini; elementi con due o più elettroni ottici; stati atomici del carbonio; transizioni ottiche e regole di selezione; effetto Zeeman, fattore di Landè ed effetto Paschen-Bach in atomi a più elettroni (6 ore).
Molecole; struttura elettronica, modello LCAO; orbitali di legame e anti-legame; molecole biatomiche, legami covalente e dipolare; molecole poliatomiche (4 ore). Ibridizzazione; molecole coniugate; proprietà ottiche (2 ore). Eccitazioni molecolari: modi rotazionali, modi vibrazionali; combinazione di transizioni elettroniche e roto-vibrazionali: principio di Franck-Condon (4 ore). Spettri atomici; scattering Raman (2 ore). Calore specifico di gas poliatomici (molecole), contributi rotazionale e vibrazionale (2 ore).
Reticolo reciproco; calcolo del reticolo reciproco; diffrazione di raggi X; modello di Von Laue (2 ore). Sfera di Ewald, metodi sperimentali; fattori di struttura e di forma, riflessioni proibite (2 ore). Elettroni in un potenziale periodico, teorema di Bloch; vettore d'onda elettronico e suo significato fisico (2 ore). Elettroni quasi liberi, gap di energia (2 ore). Conduttività elettrica nel modello a bande; conduttori, isolanti e semiconduttori (2 ore). Semiconduttori: bande di valenza e di conduzione, lacune; massa efficace (2 ore). Metodi didattici
- Lezioni frontali ed esercitazioni.
Modalità di verifica dell'apprendimento
- L’obiettivo della prova d’esame consiste nel verificare il livello di raggiungimento degli obiettivi formativi precedentemente indicati.
L’esame consiste in una prova scritta e una prova orale. La prova scritta consiste nella soluzione di alcuni problemi inerenti il programma e si intende pienamente superata con un punteggio di 18 su 30. La prova orale si terrà pochi giorni dopo quella scritta e verificherà la preparazione dello studente nel trattare gli argomenti che verranno proposti. Il voto finale terrà conto del risultato complessivo delle prove d'esame (scritto e orale). Testi di riferimento
- 1)R.Eisberg, R.Resnick "Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles", 2nd Edition, J.Wiley & Sons, 1985 (Capitoli 8,9,10)
2)Alonso-Finn "Quantum and statistical Physics" vol. 3, Addison-Wesley (Chapters 5,12)
3)C. Kittel "Introduction to Solid State Physics" VI Edizione, J. Wiley &Sons, 1986 (Capitoli 2,5,6,7,8).