

Chapter 18

Concurrency Control
Techniques

Copyright © 2004 Pearson Education, Inc.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-3

Chapter 18 Outline

Databases Concurrency Control
 1 Purpose of Concurrency Control
 2 Two-Phase locking
 5 Limitations of CCMs
 6 Index Locking
 7 Lock Compatibility Matrix
 8 Lock Granularity

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-4

Database Concurrency Control
1 Purpose of Concurrency Control

•  To enforce Isolation (through mutual exclusion) among
conflicting transactions.

•  To preserve database consistency through consistency
preserving execution of transactions.

•  To resolve read-write and write-write conflicts.

Example: In concurrent execution environment if T1
conflicts with T2 over a data item A, then the existing
concurrency control decides if T1 or T2 should get the A
and if the other transaction is rolled-back or waits.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-5

Database Concurrency Control

Two-Phase Locking Techniques
Locking is an operation which secures (a) permission to
Read or (b) permission to Write a data item for a transaction.
Example: Lock (X). Data item X is locked in behalf of the
requesting transaction.

Unlocking is an operation which removes these permissions
from the data item. Example: Unlock (X). Data item X is
made available to all other transactions.
Lock and Unlock are Atomic operations.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-6

Database Concurrency Control
Two-Phase Locking Techniques: Essential components

 Two locks modes (a) shared (read) and (b) exclusive (write).

Shared mode: shared lock (X). More than one transaction can apply
share lock on X for reading its value but no write lock can be applied
on X by any other transaction.

Exclusive mode: Write lock (X). Only one write lock on X can exist
at any time and no shared lock can be applied by any other
transaction on X.

Conflict matrix

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-7

Database Concurrency Control

Two-Phase Locking Techniques: Essential components
Lock Manager: Managing locks on data items.
Lock table: Lock manager uses it to store the identify of
transaction locking a data item, the data item, lock
mode and pointer to the next data item locked. One
simple way to implement a lock table is through linked
list.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-8

Database Concurrency Control

Two-Phase Locking Techniques: Essential components
Database requires that all transactions should be well-
formed. A transaction is well-formed if:

•  It must lock the data item before it reads or writes
to it.

•  It must not lock an already locked data items and it
must not try to unlock a free data item.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-9

Database Concurrency Control

Two-Phase Locking Techniques: Essential components
The following code performs the lock operation:

B: if LOCK (X) = 0 (*item is unlocked*)
 then LOCK (X) ← 1 (*lock the item*)
 else begin
 wait (until lock (X) = 0) and
 the lock manager wakes up the transaction);
 goto B
 end;

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-10

Database Concurrency Control

Two-Phase Locking Techniques: Essential components
The following code performs the unlock operation:

 LOCK (X) ← 0 (*unlock the item*)
 if any transactions are waiting then
 wake up one of the waiting the transactions;

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-11

Database Concurrency Control

Two-Phase Locking Techniques: Essential components

 The following code performs the read operation:

 B: if LOCK (X) = “unlocked” then
begin LOCK (X) ← “read-locked”;

 no_of_reads (X) ← 1;
end
else if LOCK (X) ← “read-locked” then

 no_of_reads (X) ← no_of_reads (X) +1
 else begin wait (until LOCK (X) = “unlocked” and
 the lock manager wakes up the transaction);
 go to B
 end;

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-12

Database Concurrency Control

Two-Phase Locking Techniques: Essential components

 The following code performs the write lock operation:

 B: if LOCK (X) = “unlocked” then
begin LOCK (X) ← “read-locked”;

 no_of_reads (X) ← 1;
end
else if LOCK (X) ← “read-locked” then

 no_of_reads (X) ← no_of_reads (X) +1
 else begin wait (until LOCK (X) = “unlocked” and
 the lock manager wakes up the transaction);
 go to B
 end;

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-13

Database Concurrency Control
Two-Phase Locking Techniques: Essential components

 The following code performs the unlock operation:
 if LOCK (X) = “write-locked” then

begin LOCK (X) ← “unlocked”;
 wakes up one of the transactions, if any

end
else if LOCK (X) ← “read-locked” then

 begin
 no_of_reads (X) ← no_of_reads (X) -1
 if no_of_reads (X) = 0 then
 begin
 LOCK (X) = “unlocked”;
 wake up one of the transactions, if any
 end
 end;

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-14

Database Concurrency Control
Two-Phase Locking Techniques: Essential components

 Lock conversion
 Lock upgrade: existing read lock to write lock
 if Ti has a read-lock (X) and Tj has no read-lock (X) (i ≠ j) then

 convert read-lock (X) to write-lock (X)
 else

 force Ti to wait until Tj unlocks X

Lock downgrade: existing write lock to read lock
 Ti has a write-lock (X) (*no transaction can have any lock on X*)

 convert write-lock (X) to read-lock (X)

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-15

Database Concurrency Control
Two-Phase Locking Techniques: The algorithm

 Two Phases: (a) Locking (Growing) (b) Unlocking (Shrinking).

 Locking (Growing) Phase: A transaction applies locks (read or write) on
desired data items one at a time.

 Unlocking (Shrinking) Phase: A transaction unlocks its locked data items
one at a time.

 Requirement: For a transaction these two phases must be mutually
exclusively, that is, during locking phase unlocking phase must not start and
during unlocking phase locking phase must not begin.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-16

Database Concurrency Control
Two-Phase Locking Techniques: The algorithm

 T1 T2 Result

 read_lock (Y); read_lock (X); Initial values: X=20; Y=30
 read_item (Y); read_item (X); Result of serial execution
 unlock (Y); unlock (X); T1 followed by T2
 write_lock (X); Write_lock (Y); X=50, Y=80.
 read_item (X); read_item (Y); Result of serial execution
 X:=X+Y; Y:=X+Y; T2 followed by T1
 write_item (X); write_item (Y); X=70, Y=50
 unlock (X); unlock (Y);

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-17

Database Concurrency Control
Two-Phase Locking Techniques: The algorithm

 T1 T2 Result

 read_lock (Y); X=50; Y=50
 read_item (Y); Nonserializable because it.
 unlock (Y); violated two-phase policy.
 read_lock (X);
 read_item (X);
 unlock (X);
 write_lock (Y);
 read_item (Y);
 Y:=X+Y;
 write_item (Y);
 unlock (Y);
 write_lock (X);
 read_item (X);
 X:=X+Y;
 write_item (X);
 unlock (X);

Time

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-18

Database Concurrency Control
Two-Phase Locking Techniques: The algorithm

 T’1 T’2

 read_lock (Y); read_lock (X); T1 and T2 follow two-phase
 read_item (Y); read_item (X); policy but they are subject to
 write_lock (X); Write_lock (Y); deadlock, which must be
 unlock (Y); unlock (X); dealt with.
 read_item (X); read_item (Y);
 X:=X+Y; Y:=X+Y;
 write_item (X); write_item (Y);
 unlock (X); unlock (Y);

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-19

Database Concurrency Control
Two-Phase Locking Techniques: The algorithm

 Two-phase policy generates two locking algorithms (a) Basic and (b)
Conservative.

 Conservative: Prevents deadlock by locking all desired data items before
transaction begins execution.

 Basic: Transaction locks data items incrementally. This may cause
deadlock which is dealt with.

 Strict: A more stricter version of Basic algorithm where unlocking is
performed after a transaction terminates (commits or aborts and rolled-
back). This is the most commonly used two-phase locking algorithm.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-20

Database Concurrency Control
Dealing with Deadlock and Starvation

 Deadlock

 T’1 T’2

 read_lock (Y); T1 and T2 did follow two-phase
 read_item (Y); policy but they are deadlock
 read_lock (X);
 read_item (Y);
 write_lock (X);
 (waits for X) write_lock (Y);
 (waits for Y)
 Deadlock (T’1 and T’2)

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-21

Database Concurrency Control
Dealing with Deadlock and Starvation

 Deadlock prevention

 A transaction locks all data items it refers to before it begins execution.
This way of locking prevents deadlock since a transaction never waits
for a data item. The conservative two-phase locking uses this approach.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-22

Database Concurrency Control
Dealing with Deadlock and Starvation

 Deadlock detection and resolution

 In this approach, deadlocks are allowed to happen. The scheduler
maintains a wait-for-graph for detecting cycle. If a cycle exists, then
one transaction involved in the cycle is selected (victim) and rolled-
back.

 A wait-for-graph is created using the lock table. As soon as a transaction
is blocked, it is added to the graph. When a chain like: Ti waits for Tj
waits for Tk waits for Ti or Tj occurs, then this creates a cycle. One of
the transaction of the cycle is selected and rolled back.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-23

Database Concurrency Control
Dealing with Deadlock and Starvation

 Deadlock avoidance

 There are many variations of two-phase locking algorithm. Some avoid
deadlock by not letting the cycle to complete. That is as soon as the
algorithm discovers that blocking a transaction is likely to create a cycle,
it rolls back the transaction. Wound-Wait and Wait-Die algorithms use
timestamps to avoid deadlocks by rolling-back victim.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-24

Database Concurrency Control
Dealing with Deadlock and Starvation

 Starvation

 Starvation occurs when a particular transaction consistently waits or
restarted and never gets a chance to proceed further. In a deadlock
resolution it is possible that the same transaction may consistently be
selected as victim and rolled-back. This limitation is inherent in all
priority based scheduling mechanisms. In Wound-Wait scheme a
younger transaction may always be wounded (aborted) by a long
running older transaction which may create starvation.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-25

Database Concurrency Control
Timestamp based concurrency control algorithm

 Timestamp
 A monotonically increasing variable (integer) indicating the age of an
operation or a transaction. A larger timestamp value indicates a more
recent event or operation.

 Timestamp based algorithm uses timestamp to serialize the execution of
concurrent transactions.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-26

Database Concurrency Control
Timestamp based concurrency control algorithm
 Basic Timestamp Ordering

 1. Transaction T issues a write_item(X) operation:
a.  If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then an younger

transaction has already read the data item so abort and roll-back T
and reject the operation.

b.  If the condition in part (a) does not exist, then execute write_item(X)
of T and set write_TS(X) to TS(T).

2. Transaction T issues a read_item(X) operation:
a.  If write_TS(X) > TS(T), then an younger transaction has already

written to the data item so abort and roll-back T and reject the
operation.

b.  If write_TS(X) ≤ TS(T), then execute read_item(X) of T and set
read_TS(X) to the larger of TS(T) and the current read_TS(X).

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-27

Database Concurrency Control
Timestamp based concurrency control algorithm

 Strict Timestamp Ordering
 1. Transaction T issues a write_item(X) operation:

a.  If TS(T) > read_TS(X), then delay T until the transaction T’ that
wrote or read X has terminated (committed or aborted).

2. Transaction T issues a read_item(X) operation:
a.  If TS(T) > write_TS(X), then delay T until the transaction T’ that

wrote or read X has terminated (committed or aborted).

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-28

Database Concurrency Control
Timestamp based concurrency control algorithm

 Thomas’s Write Rule
1.  If read_TS(X) > TS(T) then abort and roll-back T and reject the

operation.
2.  If write_TS(X) > TS(T), then just ignore the write operation and

continue execution. This is because the most recent writes counts
in case of two consecutive writes.

3.  If the conditions given in 1 and 2 above do not occur, then execute
write_item(X) of T and set write_TS(X) to TS(T).

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-29

Database Concurrency Control
Multiversion concurrency control techniques

 Concept

This approach maintains a number of versions of a data item
and allocates the right version to a read operation of a
transaction. Thus unlike other mechanisms a read operation in
this mechanism is never rejected.

Side effect: Significantly more storage (RAM and disk) is
required to maintain multiple versions. To check unlimited
growth of versions, a garbage collection is run when some
criteria is satisfied.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-30

Database Concurrency Control
Multiversion technique based on timestamp ordering

This approach maintains a number of versions of a data item
and allocates the right version to a read operation of a
transaction. Thus unlike other mechanisms a read operation in
this mechanism is never rejected.

Side effects: Significantly more storage (RAM and disk) is
required to maintain multiple versions. To check unlimited
growth of versions, a garbage collection is run when some
criteria is satisfied.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-31

Database Concurrency Control

Multiversion technique based on timestamp ordering

Assume X1, X2, …, Xn are the version of a data item X created
by a write operation of transactions. With each Xi a read_TS
(read timestamp) and a write_TS (write timestamp) are
associated.

read_TS(Xi): The read timestamp of Xi is the largest of all the
timestamps of transactions that have successfully read version Xi.

write_TS(Xi): The write timestamp of Xi that wrote the value of
version Xi.

A new version of Xi is created only by a write operation.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-32

Database Concurrency Control

Multiversion technique based on timestamp ordering

To ensure serializability, the following two rules are used.

If transaction T issues write_item (X) and version i of X has the
highest write_TS(Xi) of all versions of X that is also less than or
equal to TS(T), and read _TS(Xi) > TS(T), then abort and roll-
back T; otherwise create a new version Xi and read_TS(X) =
write_TS(Xj) = TS(T).

If transaction T issues read_item (X), find the version i of X that
has the highest write_TS(Xi) of all versions of X that is also less
than or equal to TS(T), then return the value of Xi to T, and set
the value of read _TS(Xi) to the largest of TS(T) and the current
read_TS(Xi).

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-33

Database Concurrency Control
Multiversion technique based on timestamp ordering

To ensure serializability, the following two rules are used.

1.  If transaction T issues write_item (X) and version i of X has
the highest write_TS(Xi) of all versions of X that is also less
than or equal to TS(T), and read _TS(Xi) > TS(T), then abort
and roll-back T; otherwise create a new version Xi and
read_TS(X) = write_TS(Xj) = TS(T).

2.  If transaction T issues read_item (X), find the version i of X
that has the highest write_TS(Xi) of all versions of X that is
also less than or equal to TS(T), then return the value of Xi to
T, and set the value of read _TS(Xi) to the largest of TS(T)
and the current read_TS(Xi).

Rule 2 guarantees that a read will never be rejected.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-34

Database Concurrency Control
Multiversion Two-Phase Locking Using Certify Locks

Concept

 Allow a transaction T’ to read a data item X while it is write
locked by a conflicting transaction T.

 This is accomplished by maintaining two versions of each
data item X where one version must always have been
written by some committed transaction. This means a write
operation always creates a new version of X.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-35

Database Concurrency Control
Multiversion Two-Phase Locking Using Certify Locks

Steps
1.  X is the committed version of a data item.
2.  T creates a second version X’ after obtaining a write lock on X.
3.  Other transactions continue to read X.
4.  T is ready to commit so it obtains a certify lock on X’.
5.  The committed version X becomes X’.
6.  T releases its certify lock on X’, which is X now.

read/write locking scheme read/write/certify locking scheme

Compatibility tables for

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-36

Database Concurrency Control
Multiversion Two-Phase Locking Using Certify Locks

Note

 In multiversion 2PL read and write operations from conflicting
transactions can be processed concurrently. This improves
concurrency but it may delay transaction commit because of
obtaining certify locks on all its writes. It avoids cascading abort but
like strict two phase locking scheme conflicting transactions may get
deadlocked.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-37

Database Concurrency Control
Validation (Optimistic) Concurrency Control Schemes

 In this technique only at the time of commit serializability is checked
and transactions are aborted in case of non-serializable schedules.

 Three phases:

 Read phase: A transaction can read values of committed data items.
However, updates are applied only to local copies (versions) of the
data items (in database cache).

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-38

Database Concurrency Control
Validation (Optimistic) Concurrency Control Schemes

 Validation phase: Serializability is checked before transactions write
their updates to the database.

 This phase for Ti checks that, for each transaction Tj that is either
committed or is in its validation phase, one of the following
conditions holds:

1.  Tj completes its write phase before Ti starts its read phase.

2.  Ti starts its write phase after Tj completes its write phase,
and the read_set of Ti has no items in common with the
write_set of Tj

3.  Both the read_set and write_set of Ti have no items in
common with the write_set of Tj, and Tj completes its ead
phase.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-39

Database Concurrency Control
Validation (Optimistic) Concurrency Control Schemes

 When validating Ti, the first condition is checked first for each
transaction Tj, since (1) is the simplest condition to check. If (1) is
false then (2) is checked and if (2) is false then (3) is checked. If
none of these conditions holds, the validation fails and Ti is aborted.

 Write phase: On a successful validation transactions’ updates are
applied to the database; otherwise, transactions are restarted.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-40

Database Concurrency Control
Granularity of data items and Multiple Granularity Locking

 A lockable unit of data defines its granularity. Granularity can be
coarse (entire database) or it can be fine (a tuple or an attribute of a
relation). Data item granularity significantly affects concurrency
control performance. Thus, the degree of concurrency is low for
coarse granularity and high for fine granularity. Example of data item
granularity:

1.  A field of a database record (an attribute of a tuple).

2.  A database record (a tuple or a relation).

3.  A disk block.

4.  An entire file.

5.  The entire atabase.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-41

Database Concurrency Control
Granularity of data items and Multiple Granularity Locking

 The following diagram illustrates a hierarchy of granularity from
coarse (database) to fine (record).

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-42

Database Concurrency Control
Granularity of data items and Multiple Granularity Locking

To manage such hierarchy, in addition to read and write, three
additional locking modes, called intention lock modes are
defined:

Intention-shared (IS): indicates that a shared lock(s) will be
requested on some descendent nodes(s).

Intention-exclusive (IX): indicates that an exclusive lock(s)
will be requested on some descendent nodes(s).

Shared-intention-exclusive (SIX): indicates that the current
node is locked in shared mode but an exclusive lock(s)
will be requested on some descendent nodes(s).

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-43

Database Concurrency Control
Granularity of data items and Multiple Granularity Locking

These locks are applied using the following compatibility
matrix:

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-44

Database Concurrency Control
Granularity of data items and Multiple Granularity Locking

 The set of rules which must be followed for producing
serializable schedule are

1.  The lock compatibility must adhered to.
2.  The root of the tree must be locked first, in any mode..
3.  A node N can be locked by a transaction T in S or IX mode

only if the parent node is already locked by T in either IS or
IX mode.

4.  A node N can be locked by T in X, IX, or SIX mode only if
the parent of N is already locked by T in either IX or SIX
mode.

5.  T can lock a node only if it has not unlocked any node (to
enforce 2PL policy).

6.  T can unlock a node, N, only if none of the children of N are
currently locked by T.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-45

Database Concurrency Control
Granularity of data items and Multiple Granularity Locking

An example of a serializable execution:
T1 T2 T3
IX(db)
IX(f1)
 IX(db)
 IS(db)
 IS(f1)
 IS(p11)
IX(p11)
X(r111)
 IX(f1)
 X(p12)
 S(r11j)
IX(f2)
IX(p21)
IX(r211)
Unlock (r211)
Unlock (p21)
Unlock (f2)
 S(f2)

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 18-46

Database Concurrency Control
Granularity of data items and Multiple Granularity Locking

An example of a serializable execution (continued):
T1 T2 T3
 unlock(p12)
 unlock(f1)
 unlock(db)
unlock(r111)
unlock(p11)
unlock(f1)
unlock(db)
 unlock (r111j)
 unlock (p11)
 unlock (f1)
 unlock(f2)
 unlock(db)

