
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 1

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 27

XML: Extensible Markup Language

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 3

Chapter Outline

  Introduction
  Structured, Semi structured, and Unstructured

Data.
  XML Hierarchical (Tree) Data Model.
  XML Documents, DTD, and XML Schema.
  XML Documents and Databases.
  XML Querying.

  XPath
  XQuery

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 4

Introduction
  Although HTML is widely used for formatting and

structuring Web documents, it is not suitable for specifying
structured data that is extracted from databases.

  A new language—namely XML (eXtended Markup
Language) has emerged as the standard for structuring
and exchanging data over the Web.
  XML can be used to provide more information about the

structure and meaning of the data in the Web pages rather
than just specifying how the Web pages are formatted for
display on the screen.

  The formatting aspects are specified separately—for
example, by using a formatting language such as XSL
(eXtended Stylesheet Language).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 5

Structured, Semi Structured
and Unstructured Data

  Three characterizations:
  Structured Data
  Semi-Structured Data
  Unstructured Data

  Structured Data:
  Information stored in databases is known as

structured data because it is represented in a
strict format.

  The DBMS then checks to ensure that all data
follows the structures and constraints specified in
the schema.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 6

Structured, Semi Structured
and Unstructured Data (contd.)

  Semi-Structured Data:
  In some applications, data is collected in an ad-hoc

manner before it is known how it will be stored and
managed.

  This data may have a certain structure, but not all the
information collected will have identical structure. This
type of data is known as semi-structured data.

  In semi-structured data, the schema information is
mixed in with the data values, since each data object
can have different attributes that are not known in
advance. Hence, this type of data is sometimes
referred to as self-describing data.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 7

Structured, Semi Structured
and Unstructured Data (contd.)

  Unstructured Data:
  A third category is known as unstructured data,

because there is very limited indication of the type of
data.

  A typical example would be a text document that
contains information embedded within it. Web pages in
HTML that contain some data are considered as
unstructured data.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 8

Structured, Semi Structured
and Unstructured Data (contd.)

  Semi-structured data may be
displayed as a directed graph...
  The labels or tags on the directed edges represent

the schema names—the names of attributes,
object types (or entity types or classes), and
relationships.

  The internal nodes represent individual objects or
composite attributes.

  The leaf nodes represent actual data values of
simple (atomic) attributes.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 9

FIGURE 27.1 Representing
semistructured data as a graph.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 10

XML Hierarchical (Tree) Data Model

  FIGURE 27.3
A complex XML
element called
<projects>

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 11

XML Hierarchical (Tree) Data Model
(contd.)

  The basic object is XML is the XML document.
  There are two main structuring concepts that are

used to construct an XML document:
  Elements
  Attributes

  Attributes in XML provide additional information
that describe elements.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 12

XML Hierarchical (Tree) Data Model
(contd.)

  As in HTML, elements are identified in a document by
their start tag and end tag.
  The tag names are enclosed between angled brackets <…>,

and end tags are further identified by a backslash </…>.
  Complex elements are constructed from other elements

hierarchically, whereas simple elements contain data
values.

  It is straightforward to see the correspondence between
the XML textual representation and the tree structure.
  In the tree representation, internal nodes represent complex

elements, whereas leaf nodes represent simple elements.
  That is why the XML model is called a tree model or a

hierarchical model.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 13

XML Hierarchical (Tree) Data Model
(contd.)

  It is possible to characterize three main types of XML
documents:
1.  Data-centric XML documents

  These documents have many small data items that follow a
specific structure, and hence may be extracted from a
structured database. They are formatted as XML documents
in order to exchange them or display them over the Web.

2.  Document-centric XML documents:
  These are documents with large amounts of text, such as

news articles or books. There is little or no structured data
elements in these documents.

3.  Hybrid XML documents:
  These documents may have parts that contains structured

data and other parts that are predominantly textual or
unstructured.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 14

XML Documents, DTD, and XML
Schema

  Two types of XML
  Well-Formed XML
  Valid XML

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 15

XML Documents, DTD, and XML
Schema

  Well-Formed XML
  It must start with an XML declaration to indicate

the version of XML being used—as well as any
other relevant attributes.

  It must follow the syntactic guidelines of the tree
model.

  This means that there should be a single root
element, and every element must include a
matching pair of start tag and end tag within the
start and end tags of the parent element.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 16

XML Documents, DTD, and XML
Schema

  Well-Formed XML (contd.)
  A well-formed XML document is syntactically

correct
  This allows it to be processed by generic processors

that traverse the document and create an internal
tree representation.

  DOM (Document Object Model) - Allows programs to
manipulate the resulting tree representation corresponding
to a well-formed XML document. The whole document
must be parsed beforehand when using dom.

  SAX - Allows processing of XML documents on the fly by
notifying the processing program whenever a start or end
tag is encountered.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 17

XML Documents, DTD, and XML
Schema

  Valid XML
  A stronger criterion is for an XML document to be

valid.
  In this case, the document must be well-formed,

and in addition the element names used in the
start and end tag pairs must follow the structure
specified in a separate XML DTD (Document
Type Definition) file or XML schema file.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 18

 XML Documents, DTD, and XML
Schema (contd.)

  FIGURE 27.4 An XML DTD file called projects

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 19

XML Documents, DTD, and XML
Schema (contd.)
  XML DTD Notation

  A * following the element name means that the element can
be repeated zero or more times in the document. This can
be called an optional multivalued (repeating) element.

  A + following the element name means that the element can
be repeated one or more times in the document. This can
be called a required multivalued (repeating) element.

  A ? following the element name means that the element can
be repeated zero or one times. This can be called an
optional single-valued (non-repeating) element.

  An element appearing without any of the preceding three
symbols must appear exactly once in the document. This
can be called an required single-valued (non-repeating)
element.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 20

XML Documents, DTD, and XML
Schema (contd.)

  XML DTD Notation (contd.)
  The type of the element is specified via parentheses

following the element.
  If the parentheses include names of other elements, these

would be the children of the element in the tree structure.
  If the parentheses include the keyword #PCDATA or one of

the other data types available in XML DTD, the element is a
leaf node. PCDATA stands for parsed character data, which
is roughly similar to a string data type.

  Parentheses can be nested when specifying elements.
  A bar symbol (e1 | e2) specifies that either e1 or e2 can

appear in the document.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 21

XML Documents, DTD, and XML
Schema (contd.)

  Limitations of XML DTD
  First, the data types in DTD are not very general.
  Second, DTD has its own special syntax and so it

requires specialized processors.
  It would be advantageous to specify XML schema

documents using the syntax rules of XML itself so
that the same processors for XML documents can
process XML schema descriptions.

  Third, all DTD elements are always forced to follow
the specified ordering the document so unordered
elements are not permitted.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 22

XML Documents, DTD, and XML
Schema (contd.)

  FIGURE 27.5 An XML schema file called company

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 23

XML Documents, DTD, and XML
Schema (contd.)

  FIGURE 27.5 An XML
schema file called
company (contd.)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 24

XML Documents,
DTD, and XML
Schema (contd.)
  FIGURE 27.5 An XML

schema file called
company (contd.)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 25

XML Documents, DTD, and XML
Schema (contd.)

  FIGURE 27.5 An XML schema file called company
(contd.)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 26

XML Documents, DTD, and XML
Schema (contd.)

  XML Schema
  Schema Descriptions and XML Namespaces

  It is necessary to identify the specific set of XML
schema language elements (tags) by a file stored at
a Web site location.

  The second line in our example specifies the file used in
this example, which is: "http://www.w3.org/2001/
XMLSchema".

  Each such definition is called an XML namespace.
  The file name is assigned to the variable xsd using

the attribute xmlns (XML namespace), and this
variable is used as a prefix to all XML schema tags.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 27

XML Documents, DTD, and XML
Schema (contd.)

  XML Schema (contd.)
  Annotations, documentation, and language

used:
  The xsd:annotation and xsd:documentation are

used for providing comments and other descriptions
in the XML document.

  The attribute XML:lang of the xsd:documentation
element specifies the language being used. E.g.,
“en”

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 28

XML Documents, DTD, and XML
Schema (contd.)

  XML Schema (contd.)
  Elements and types:

  We specify the root element of our XML schema. In
XML schema, the name attribute of the xsd:element
tag specifies the element name, which is called
company for the root element in our example.

  The structure of the company root element is a
xsd:complexType.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 29

XML Documents, DTD, and XML
Schema (contd.)

  XML Schema (contd.)
  First-level elements in the company database:

  These elements are named employee, department,
and project, and each is specified in an xsd:element
tag. If a tag has only attributes and no further sub-
elements or data within it, it can be ended with the
back slash symbol (/>) and termed Empty Element.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 30

XML Documents, DTD, and XML
Schema (contd.)

  XML Schema (contd.)
  Specifying element type and minimum and

maximum occurrences:
  If we specify a type attribute in an xsd:element, this

means that the structure of the element will be
described separately, typically using the
xsd:complexType element. The minOccurs and
maxOccurs tags are used for specifying lower and
upper bounds on the number of occurrences of an
element. The default is exactly one occurrence.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 31

XML Documents, DTD, and XML
Schema (contd.)

  XML Schema (contd.)
  Specifying Keys:

  For specifying primary keys, the tag xsd:key is
used.

  For specifying foreign keys, the tag xsd:keyref is
used.

  When specifying a foreign key, the attribute refer of the
xsd:keyref tag specifies the referenced primary key
whereas the tags xsd:selector and xsd:field specify the
referencing element type and foreign key.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 32

XML Documents, DTD, and XML
Schema (contd.)
  XML Schema (contd.)

  Specifying the structures of complex elements via
complex types:

  Complex elements in our example are Department, Employee,
Project, and Dependent, which use the tag
xsd:complexType. We specify each of these as a sequence
of subelements corresponding to the database attributes of
each entity type by using the xsd:sequence and xsd:element
tags of XML schema. Each element is given a name and type
via the attributes name and type of xsd:element.

  We can also specify minOccurs and maxOccurs attributes if
we need to change the default of exactly one occurrence. For
(optional) database attributes where null is allowed, we need
to specify minOccurs = 0, whereas for multivalued database
attributes we need to specify maxOccurs = “unbounded” on
the corresponding element.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 33

XML Documents, DTD, and XML
Schema (contd.)

  XML Schema (contd.)
  Composite (compound) attributes:

  Composite attributes from ER Schema are also
specified as complex types in the XML schema, as
illustrated by the Address, Name, Worker, and
WorksOn complex types. These could have been
directly embedded within their parent elements.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 34

XML Documents and Databases.

  Approaches to Storing XML Documents
  Using a DBMS to store the documents as text:

  We can use a relational or object DBMS to store whole XML
documents as text fields within the DBMS records or objects.
This approach can be used if the DBMS has a special module
for document processing, and would work for storing
schemaless and document-centric XML documents.

  Using a DBMS to store the document contents as data
elements:

  This approach would work for storing a collection of
documents that follow a specific XML DTD or XML schema.
Since all the documents have the same structure, we can
design a relational (or object) database to store the leaf-level
data elements within the XML documents.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 35

XML Documents and Databases.

  Approaches to Storing XML Documents (contd.)
  Designing a specialized system for storing native XML data:

  A new type of database system based on the hierarchical
(tree) model would be designed and implemented. The system
would include specialized indexing and querying techniques,
and would work for all types of XML documents.

  Creating or publishing customized XML documents from
pre-existing relational databases:

  Because there are enormous amounts of data already stored
in relational databases, parts of these data may need to be
formatted as documents for exchanging or displaying over the
Web.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 36

XML Documents, DTD, and XML
Schema (contd.)

  Extracting XML Documents from Relational
Databases.
  Suppose that an application needs to extract XML

documents for student, course, and grade
information from the university database.

  The data needed for these documents is contained
in the database attributes of the entity types
course, section, and student as shown below
(part of the main ER), and the relationships s-s
and c-s between them.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 37

Subset of the UNIVERSITY database
schema

  FIGURE 27.7
Subset of the UNIVERSITY database schema
needed for XML document extraction.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 38

XML Documents, DTD, and XML
Schema (contd.)

  Extracting XML Documents from Relational
Databases
  One of the possible hierarchies that can be

extracted from the database subset could choose
COURSE as the root.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 39

Hierarchical (tree) view with COURSE as
the root

  FIGURE 27.8
Hierarchical (tree) view
with COURSE as the root.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 40

XML schema document with COURSE as
the root
  FIGURE 27.9

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 41

XML Documents, DTD, and XML
Schema (contd.)

  Breaking Cycles To Convert Graphs into Trees
  It is possible to have a more complex subset with

one or more cycles, indicating multiple
relationships among the entities.

  Suppose that we need the information in all the
entity types and relationships in figure below for a
particular XML document, with student as the root
element.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 42

An ER schema diagram for a
simplified UNIVERSITY database.
  FIGURE 27.6

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 43

XML Documents, DTD, and XML
Schema (contd.)

  Breaking Cycles To convert Graphs into Trees
  One way to break the cycles is to replicate the entity

types involved in cycles.
  First, we replicate INSTRUCTOR as shown in part (2) of

Figure, calling the replica to the right INSTRUCTOR1. The
INSTRUCTOR replica on the left represents the relationship
between instructors and the sections they teach, whereas the
INSTRUCTOR1 replica on the right represents the relationship
between instructors and the department each works in.

  We still have the cycle involving COURSE, so we can replicate
COURSE in a similar manner, leading to the hierarchy shown
in part (3) . The COURSE1 replica to the left represents the
relationship between courses and their sections, whereas the
COURSE replica to the right represents the relationship
between courses and the department that offers each course.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 44

Converting a graph with cycles into a
hierarchical (tree) structure

  FIGURE 27.13

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 45

XML Querying

  XPath
  An XPath expression returns a collection of

element nodes that satisfy certain patterns
specified in the expression.

  The names in the XPath expression are node
names in the XML document tree that are either
tag (element) names or attribute names, possibly
with additional qualifier conditions to further
restrict the nodes that satisfy the pattern.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 46

XML Querying

  XPath (contd.)
  There are two main separators when specifying a path:

  single slash (/) and double slash (//)
  A single slash before a tag specifies that the tag must appear as

a direct child of the previous (parent) tag, whereas a double
slash specifies that the tag can appear as a descendant of the
previous tag at any level.

  It is customary to include the file name in any XPath query
allowing us to specify any local file name or path name that
specifies the path.

  doc(www.company.com/info.XML)/company => COMPANY
XML doc

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 47

XML Querying
1.  Returns the COMPANY root node and all its descendant nodes,

which means that it returns the whole XML document.
2.  Returns all department nodes (elements) and their descendant

subtrees.
3.  Returns all employeeName nodes that are direct children of an

employee node, such that the employee node has another child
element employeeSalary whose value is greater than 70000.

4.  This returns the same result as the previous one except that we
specified the full path name in this example.

5.  This returns all projectWorker nodes and their descendant nodes that
are children under a path /company/project and that have a child
node hours with value greater than 20.0 hours.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 48

Some examples of XPath
expressions

  FIGURE 27.14
Some examples of XPath expressions on XML
documents that follow the XML schema file
COMPANY in FIGURE 27.5.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 49

XML Querying

  XQuery
  XQuery uses XPath expressions, but has additional

constructs.
  XQuery permits the specification of more general queries on

one or more XML documents.
  The typical form of a query in XQuery is known as a FLWR

expression, which stands for the four main clauses of
XQuery and has the following form:

  FOR <variable bindings to individual nodes (elements)>
  LET <variable bindings to collections of nodes (elements)>
  WHERE <qualifier conditions>
  RETURN <query result specification>

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 50

XML Querying
1.  This query retrieves the first and last names of employees who earn

more than 70000. The variable $x is bound to each employeeName
element that is a child of an employee element, but only for employee
elements that satisfy the qualifier that their employeeSalary is greater
that 70000.

2.  This is an alternative way of retrieving the same elements retrieved
by the first query.

3.  This query illustrates how a join operation can be performed by
having more than one variable. Here, the $x variable is bound to
each projectWorker element that is a child of project number 5,
whereas the $y variable is bound to each employee element. The join
condition matches SSN values in order to retrieve the employee
names.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 51

Some Examples of XQuery Queries

  Some examples of XQuery queries on XML
documents that follow the XML schema file
COMPANY in FIGURE 27.5.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 27- 52

Recap

  Introduction
  Structured, Semi structured, and Unstructured

Data.
  XML Hierarchical (Tree) Data Model.
  XML Documents, DTD, and XML Schema.
  XML Documents and Databases.
  XML Querying.

  XPath
  XQuery

